期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于事件的端到端视觉位置识别弱监督网络架构 被引量:1
1
作者 孔德磊 方正 +2 位作者 李昊佳 侯宽旭 姜俊杰 《机器人》 EI CSCD 北大核心 2022年第5期613-625,共13页
传统的视觉位置识别(VPR)方法通常使用基于图像帧的相机,存在剧烈光照变化、快速运动等易导致VPR失败的问题。针对上述问题,本文提出了一种使用事件相机的端到端VPR网络,可以在具有挑战性的环境中实现良好的VPR性能。所提出算法的核心... 传统的视觉位置识别(VPR)方法通常使用基于图像帧的相机,存在剧烈光照变化、快速运动等易导致VPR失败的问题。针对上述问题,本文提出了一种使用事件相机的端到端VPR网络,可以在具有挑战性的环境中实现良好的VPR性能。所提出算法的核心思想是,首先采用事件脉冲张量(EST)体素网格对事件流进行表征,然后利用深度残差网络进行特征提取,最后采用改进的局部聚合描述子向量(VLAD)网络进行特征聚合,最终实现基于事件流的端到端VPR。将该方法在基于事件的驾驶数据集(MVSEC、DDD17)和人工合成的事件流数据集(Oxford RobotCar)上与典型的基于图像帧的视觉位置识别方法进行了比较实验。结果表明,在具有挑战性的场景(例如夜晚场景)中,本文方法的性能优于基于图像帧的视觉位置识别方法,其Recall@1指标提升约6.61%。据我们所知,针对视觉位置识别任务,这是首个直接处理事件流数据的端到端弱监督深度网络架构。 展开更多
关键词 视觉位置识别(VPR) 事件相机 事件脉冲张量(EST) 深度残差网络 三元组排序损失
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部