Aiming at the industry cyber-physical system(ICPS)where Denial-of-Service(DoS)attacks and actuator failure coexist,the integrated security control problem of ICPS under multi-objective constraints was studied.First,fr...Aiming at the industry cyber-physical system(ICPS)where Denial-of-Service(DoS)attacks and actuator failure coexist,the integrated security control problem of ICPS under multi-objective constraints was studied.First,from the perspective of the defender,according to the differential impact of the system under DoS attacks of different energies,the DoS attacks energy grading detection standard was formulated,and the ICPS comprehensive security control framework was constructed.Secondly,a security transmission strategy based on event triggering was designed.Under the DoS attack energy classification detection mechanism,for large-energy attacks,the method based on time series analysis was considered to predict and compensate for lost data.Therefore,on the basis of passive and elastic response to small energy attacks,the active defense capability against DoS attacks was increased.Then by introducing the conecomplement linearization algorithm,the calculation methods of the state and fault estimation observer and the integrated safety controller were deduced,the goal of DoS attack active and passive hybrid intrusion tolerance and actuator failure active fault tolerance were realized.Finally,a simulation example of a four-capacity water tank system was given to verify the validity of the obtained conclusions.展开更多
基金supported by Gansu Higher Education Innovation Fund Project(No.2023B-439)。
文摘Aiming at the industry cyber-physical system(ICPS)where Denial-of-Service(DoS)attacks and actuator failure coexist,the integrated security control problem of ICPS under multi-objective constraints was studied.First,from the perspective of the defender,according to the differential impact of the system under DoS attacks of different energies,the DoS attacks energy grading detection standard was formulated,and the ICPS comprehensive security control framework was constructed.Secondly,a security transmission strategy based on event triggering was designed.Under the DoS attack energy classification detection mechanism,for large-energy attacks,the method based on time series analysis was considered to predict and compensate for lost data.Therefore,on the basis of passive and elastic response to small energy attacks,the active defense capability against DoS attacks was increased.Then by introducing the conecomplement linearization algorithm,the calculation methods of the state and fault estimation observer and the integrated safety controller were deduced,the goal of DoS attack active and passive hybrid intrusion tolerance and actuator failure active fault tolerance were realized.Finally,a simulation example of a four-capacity water tank system was given to verify the validity of the obtained conclusions.