Hazard factors, hazard-bearling objects, disaster-developing environment, and disaster-preventing capability play key roles in the formation of Tropical Cyclone (TC) disasters. Of all of these, the most important is...Hazard factors, hazard-bearling objects, disaster-developing environment, and disaster-preventing capability play key roles in the formation of Tropical Cyclone (TC) disasters. Of all of these, the most important is the intensity of hazard factors (risk sources). In this study, this intensity is uniformly defined by the probability of hazard factors; then a relationship is established between disaster risk intensity and hazard factors. The exceedance probability of various hazard factors, including frequency and timing, scope of wind and rain, and maximum wind and rain of impacting TC cases, are calculated using data from TCs that impacted Shanghai fi'om 1959-2006. The relationship between disaster situation and risk probability of hazard factors is analyzed, and the indices and model of TC disaster assessment are established based on the results. The process maximum wind speed and maximum daily precipitation are very important in TC-related disaster formation in Shanghai. The results of disaster indices coordinate with the results of the assessment model, and both can show the extent of probability of a TC disaster. Tests using TC data in 2007 and 2008 show that disasters caused by TC Krosa (0716) would be more serious than those by TC Wipha (0713), and that TC Fung Wong (0808) would have a weak impact. Real-life situations validate these results.展开更多
基金National Basic Research Program of China or 973 Program (2009CB421505)Shanghai Key Agricultural Projects (Hu Nong Ke 2006-4-10)
文摘Hazard factors, hazard-bearling objects, disaster-developing environment, and disaster-preventing capability play key roles in the formation of Tropical Cyclone (TC) disasters. Of all of these, the most important is the intensity of hazard factors (risk sources). In this study, this intensity is uniformly defined by the probability of hazard factors; then a relationship is established between disaster risk intensity and hazard factors. The exceedance probability of various hazard factors, including frequency and timing, scope of wind and rain, and maximum wind and rain of impacting TC cases, are calculated using data from TCs that impacted Shanghai fi'om 1959-2006. The relationship between disaster situation and risk probability of hazard factors is analyzed, and the indices and model of TC disaster assessment are established based on the results. The process maximum wind speed and maximum daily precipitation are very important in TC-related disaster formation in Shanghai. The results of disaster indices coordinate with the results of the assessment model, and both can show the extent of probability of a TC disaster. Tests using TC data in 2007 and 2008 show that disasters caused by TC Krosa (0716) would be more serious than those by TC Wipha (0713), and that TC Fung Wong (0808) would have a weak impact. Real-life situations validate these results.