A series of electron donors,including 1,1-cyclopentanecarboxylic acid diethyl ester (CPCADEE),1,1cyclopentanedimethanol acetic diester (CPDMAD),1,1-biethoxymethyl pentane (BEMP),2,2-diethyl diethylmalonate (DEDEM)and ...A series of electron donors,including 1,1-cyclopentanecarboxylic acid diethyl ester (CPCADEE),1,1cyclopentanedimethanol acetic diester (CPDMAD),1,1-biethoxymethyl pentane (BEMP),2,2-diethyl diethylmalonate (DEDEM)and 2,2-diethyl-1,3-propanediol acetic diester (DEPDADE),were synthesized by diethyl malonate (DEM).The purities and structures of the above products were characterized by gas chromatography (GC) and gas chromatography-mass spectrometer (GC-MS),respectively.Furthermore,the possible optimal three-dimensional structures of these donors were simulated by means of Gaussian 03 and Chem 3D.Then these electron donors were coordinated with tetrachloro titanium (TiCl 4) and chloride magnesium (MgCl 2)to obtain the catalysts for the polymerization of propylene.The catalytic activities and properties of polypropylene are greatly improved by adding external donor(ED) when CPCADEE or DEPDADE is used as internal donor(ID).However,when BEMP was used as ID,the highest catalytic activity is obtained without adding ED,which can reduce production costs and simplify catalytic synthesis.The experiments indicate that BEMP has the shortest distance of oxygen atoms and the highest electronegativity.展开更多
Poly(ethylene terephthalate)(PET)was synthesized by the in-situ polymerization method using layered double hydrotalcite(LDH)as the catalyst,and the thermal and flame retardation properties of PET were investigated as ...Poly(ethylene terephthalate)(PET)was synthesized by the in-situ polymerization method using layered double hydrotalcite(LDH)as the catalyst,and the thermal and flame retardation properties of PET were investigated as required.As identified by differential scanning calorimetry(DSC)and thermogravimetric(TGA)analysis,the crystallization rate and thermal degradation temperature of the as-prepared PET sample were enhanced compared with commercial PET sample.It was confirmed from the fire-resistant property study that the LDH can be used as an efficient flame-retardant besides functioning as a catalyst in the transesterification/polycondensation process for PET synthesis.展开更多
基金Supported by National Natural Science Foundation of China (No. 20476080)Tianjin Natural Science Foundation (No. 07JCYBJC00600)
文摘A series of electron donors,including 1,1-cyclopentanecarboxylic acid diethyl ester (CPCADEE),1,1cyclopentanedimethanol acetic diester (CPDMAD),1,1-biethoxymethyl pentane (BEMP),2,2-diethyl diethylmalonate (DEDEM)and 2,2-diethyl-1,3-propanediol acetic diester (DEPDADE),were synthesized by diethyl malonate (DEM).The purities and structures of the above products were characterized by gas chromatography (GC) and gas chromatography-mass spectrometer (GC-MS),respectively.Furthermore,the possible optimal three-dimensional structures of these donors were simulated by means of Gaussian 03 and Chem 3D.Then these electron donors were coordinated with tetrachloro titanium (TiCl 4) and chloride magnesium (MgCl 2)to obtain the catalysts for the polymerization of propylene.The catalytic activities and properties of polypropylene are greatly improved by adding external donor(ED) when CPCADEE or DEPDADE is used as internal donor(ID).However,when BEMP was used as ID,the highest catalytic activity is obtained without adding ED,which can reduce production costs and simplify catalytic synthesis.The experiments indicate that BEMP has the shortest distance of oxygen atoms and the highest electronegativity.
文摘Poly(ethylene terephthalate)(PET)was synthesized by the in-situ polymerization method using layered double hydrotalcite(LDH)as the catalyst,and the thermal and flame retardation properties of PET were investigated as required.As identified by differential scanning calorimetry(DSC)and thermogravimetric(TGA)analysis,the crystallization rate and thermal degradation temperature of the as-prepared PET sample were enhanced compared with commercial PET sample.It was confirmed from the fire-resistant property study that the LDH can be used as an efficient flame-retardant besides functioning as a catalyst in the transesterification/polycondensation process for PET synthesis.