利用Caco-2细胞模型研究不同浓度硫酸铜,微米氧化铜,纳米氧化铜(铜水平2、4、8、16 mg/L)对细胞铜-ATP酶、二价金属离子转运体1(Divalent Metal Transporter 1,DMT1)、金属硫蛋白(metallothionein,MT)含量的影响。结果显示,培养液中添...利用Caco-2细胞模型研究不同浓度硫酸铜,微米氧化铜,纳米氧化铜(铜水平2、4、8、16 mg/L)对细胞铜-ATP酶、二价金属离子转运体1(Divalent Metal Transporter 1,DMT1)、金属硫蛋白(metallothionein,MT)含量的影响。结果显示,培养液中添加铜离子能提高Caco-2细胞铜-ATP酶、MT含量,低浓度铜离子能提高细胞DMT1含量,高浓度铜离子降低细胞DMT1含量。纳米氧化铜对几种铜转运蛋白的作用与硫酸铜类似,但纳米氧化铜对铜-ATP酶、MT、DMT1含量的影响更加明显。展开更多
从分子结构与分布、生理功能及其对二价金属离子吸收的调控机制等方面对二价金属离子转运蛋白1(divalent metal transporter 1,DMT1)的国内外研究现状进行了综述。旨在通过对DMT1在微量元素吸收中的作用机制的研究,来提高动物微量元素...从分子结构与分布、生理功能及其对二价金属离子吸收的调控机制等方面对二价金属离子转运蛋白1(divalent metal transporter 1,DMT1)的国内外研究现状进行了综述。旨在通过对DMT1在微量元素吸收中的作用机制的研究,来提高动物微量元素的吸收效率和利用率。展开更多
二价金属离子转运蛋白1(divalent metal transporter 1,DMT1)是一种在哺乳动物广泛表达的金属离子转运载体,参与机体内多种金属离子的转运。本文综述DMT1分子结构与分布、生理功能及其对二价金属离子吸收的调控机制,旨在通过对DMT1在微...二价金属离子转运蛋白1(divalent metal transporter 1,DMT1)是一种在哺乳动物广泛表达的金属离子转运载体,参与机体内多种金属离子的转运。本文综述DMT1分子结构与分布、生理功能及其对二价金属离子吸收的调控机制,旨在通过对DMT1在微量元素吸收中的作用机制的研究,来提高动物微量元素的吸收效率和利用率。展开更多
Background and aims: While upregulation of divalent metal transporter 1 (DMT1) and iron regulated gene 1 (IREG1)within duodenal enterocytes is reported in patients with hereditary haemochromatosis (HH), these findings...Background and aims: While upregulation of divalent metal transporter 1 (DMT1) and iron regulated gene 1 (IREG1)within duodenal enterocytes is reported in patients with hereditary haemochromatosis (HH), these findings are controversial. Furthermore,the effect of HFE, the gene mutated in HH, on expression of these molecules is unclear. This study examines duodenal expression of these three molecules in HH patients(prior to and following phlebotomy), in patients with iron deficiency (ID), and in controls. Methods: DMT1, IREG1, and HFE mRNA were measured in duodenal tissue of C282Y homozygous HH patients, in ID patients negative for the C282Y mutation with a serum ferritin concentration less than 20 μ g/l,and in controls negative for C282Y and H63D mutations with normal iron indices, using real time polymerase chain reaction.Resells: DMT1 and IREG1 mRNA levels were not significantly different in non-phlebotomised (untreated) HH patients compared with controls. DMT1 expression was significantly increased in HH patients who had undergone phlebotomy therapy(treated) and in patients with ID compared with controls.IREG1 was significantly increased in ID patients relative to controls, and while IREG1 expression was 1.8-fold greater in treated HH patients, this was not statistically significant.HFE mRNA expression was not significantly different in any of the groups investigated relative to controls. Conclusions:These findings demonstrate that untreated HH patients do not have increased duodenal DMT1 and IREG mRNA, but rather phlebotomy increases expression of these molecules, reflecting the effect of phlebotomy induced erythropoiesis. Finally, HFE appears to play a minor role in the regulation of iron absorption by the duodenal enterocyte.展开更多
文摘利用Caco-2细胞模型研究不同浓度硫酸铜,微米氧化铜,纳米氧化铜(铜水平2、4、8、16 mg/L)对细胞铜-ATP酶、二价金属离子转运体1(Divalent Metal Transporter 1,DMT1)、金属硫蛋白(metallothionein,MT)含量的影响。结果显示,培养液中添加铜离子能提高Caco-2细胞铜-ATP酶、MT含量,低浓度铜离子能提高细胞DMT1含量,高浓度铜离子降低细胞DMT1含量。纳米氧化铜对几种铜转运蛋白的作用与硫酸铜类似,但纳米氧化铜对铜-ATP酶、MT、DMT1含量的影响更加明显。
文摘二价金属离子转运蛋白1(divalent metal transporter 1,DMT1)是一种在哺乳动物广泛表达的金属离子转运载体,参与机体内多种金属离子的转运。本文综述DMT1分子结构与分布、生理功能及其对二价金属离子吸收的调控机制,旨在通过对DMT1在微量元素吸收中的作用机制的研究,来提高动物微量元素的吸收效率和利用率。
文摘Background and aims: While upregulation of divalent metal transporter 1 (DMT1) and iron regulated gene 1 (IREG1)within duodenal enterocytes is reported in patients with hereditary haemochromatosis (HH), these findings are controversial. Furthermore,the effect of HFE, the gene mutated in HH, on expression of these molecules is unclear. This study examines duodenal expression of these three molecules in HH patients(prior to and following phlebotomy), in patients with iron deficiency (ID), and in controls. Methods: DMT1, IREG1, and HFE mRNA were measured in duodenal tissue of C282Y homozygous HH patients, in ID patients negative for the C282Y mutation with a serum ferritin concentration less than 20 μ g/l,and in controls negative for C282Y and H63D mutations with normal iron indices, using real time polymerase chain reaction.Resells: DMT1 and IREG1 mRNA levels were not significantly different in non-phlebotomised (untreated) HH patients compared with controls. DMT1 expression was significantly increased in HH patients who had undergone phlebotomy therapy(treated) and in patients with ID compared with controls.IREG1 was significantly increased in ID patients relative to controls, and while IREG1 expression was 1.8-fold greater in treated HH patients, this was not statistically significant.HFE mRNA expression was not significantly different in any of the groups investigated relative to controls. Conclusions:These findings demonstrate that untreated HH patients do not have increased duodenal DMT1 and IREG mRNA, but rather phlebotomy increases expression of these molecules, reflecting the effect of phlebotomy induced erythropoiesis. Finally, HFE appears to play a minor role in the regulation of iron absorption by the duodenal enterocyte.