According to conventional theory, little genomic changes should occur in homozygous and stable amphiploids of the grass family, particularly those involving polyploid wheat as a parent. In the present study, however, ...According to conventional theory, little genomic changes should occur in homozygous and stable amphiploids of the grass family, particularly those involving polyploid wheat as a parent. In the present study, however, extensive genomic changes were detected in two octoploid partial amphiploids of common wheat (Triticum aestivum L.)_wheatgrass (Agropyron intermedium (Host) P.B.=Elytrigia intermedia (Host) Nevski=Thinopyrum intermedium (Host) Barkworth and Dewey), namely Zhong 3 and Zhong 5, by RFLP analysis using 10 low_copy, wheat chromosome_specific sequences and 33 representative homoeologous group_specific sequences as probes. Genomic changes involved loss of wheat hybridization fragment(s) and/or acquisition of new fragment(s). Uniformity of the RFLP patterns among 5 individual plants taken respectively from Zhong 3 and Zhong 5 in two successive generations, suggested that genomic changes probably had occurred in the early few generations after octoploid amphiploid formation, and remained essentially static thereafter. The highly similar RFLP patterns between Zhong 3 and Zhong 5, which had identical genomic constitution but differed from each other due to involvement of different wheat varieties as parents imply that genomic changes were probably not at random. Possible causes for the extensive and rapid genomic changes in the newly formed plant amphiploids, as well as their implications for polyploid genome evolution and breeding application are discussed.展开更多
Based on simulations of the IPCC 20C3M and SRES A1B experiments in ten coupled models, the Asian summer mon-soon (ASM) response to CO2 doubling and the different responses among models are examined. Nine models show t...Based on simulations of the IPCC 20C3M and SRES A1B experiments in ten coupled models, the Asian summer mon-soon (ASM) response to CO2 doubling and the different responses among models are examined. Nine models show the similar results that the weakening of land-ocean thermal contrast caused by the CO2 doubling contributes to a weaker large-scale ASM circulation. Further analysis in this study also shows that the major ASM components,such as the Somali cross-equatorial flow,the low level India-South China Sea monsoon trough,and the upper level tropical easterly jet stream, weaken as CO2 doubles.However,the ASM rainfall increases as a result of the increased moisture from the warmer Indian Ocean and the South China Sea, and the enhanced northward moisture transport over the ASM region.For the response of enhanced northward moisture transport over South Asia, the positive contribution of moisture content increase in the Indian Ocean is dominant and the negative contribution of the weaker mon-soon circulation is secondary at 850 hPa,but both have positive contribution to the total moisture transport along the East China coast.The paradox of the weaker ASM circulation and the increasing precipitation in CO2 doubling is confirmed.It is found that strengthening of northward moisture transport could intensify the precipitation and atmospheric heat source over the north Arabian Sea and East China,and result in enhanced southwesterly at 850 hPa as global warming occurs.All ten models show significant enhanced southwesterly response over the north Arabian Sea,and six of them show enhanced southwesterly response along the East China coast.展开更多
The datasets of the Chinese Academy of Sciences(CAS)Flexible Global Ocean–Atmosphere–Land System(FGOALS-f3-L)model for the baseline experiment of the fully coupled runs in the Diagnostic,Evaluation and Characterizat...The datasets of the Chinese Academy of Sciences(CAS)Flexible Global Ocean–Atmosphere–Land System(FGOALS-f3-L)model for the baseline experiment of the fully coupled runs in the Diagnostic,Evaluation and Characterization of Klima(DECK)common experiments of phase 6 of the Coupled Model Intercomparison Project(CMIP6)are described in this study.The CAS FGOALS-f3-L model team submitted the pi Control run with a near equilibrium ocean state for 561 model years,and 160-year integrations for three ensemble members of abrupt-4×CO2 and 1pct CO2,respectively.The ensemble members restart from the 600,650 and 700 model years in the pi Control run,respectively.The baseline performances of the model are validated in this article.The preliminary evaluation suggests that the CAS FGOALS-f3-L model can preserve the long-term stability well for a mean net radiation flux of 0.31 W m-2at the top of the atmosphere,and a limited decreasing trend of-0.03 W m-2/100 yr.The global annual mean SST is 16.45°C for the 561-year mean,with an increase of 0.03°C/100 yr.The model captures the basic spatial patterns of climate-mean SST and precipitation,but still underestimates the SST over the warm pool.The coupled model mitigates the precipitation bias in the ITCZ compared with the results from CMIP5.Moreover,the model’s climate sensitivity represented by the equilibrium climate sensitivity has been reduced from 4.5°C in CMIP5 to 3.0°C in CMIP6.All these datasets contribute to the benchmark of model behaviors for the desired continuity of CMIP.展开更多
The purpose of this paper is to present a simple way to approximate the dependence of the global mean air temperature at Earth's surface on atmospheric concentration of carbon dioxide. Current discussions include ene...The purpose of this paper is to present a simple way to approximate the dependence of the global mean air temperature at Earth's surface on atmospheric concentration of carbon dioxide. Current discussions include energy aspects of the greenhouse effect and the global warming. The starting point for the research are laws of thermodynamics, energy equilibrium and absorption and emission property of the atmosphere. According to the calculations, the natural and the anthropogenic changes effect the atmosphere. By the year 2100 the CO2 concentration will be doubled in comparison with the value of the pre-industrial ages. The doubled CO2 concentration will mean a temperature change about 1 ℃-1.5 ℃.展开更多
Cobalt disulfide(CoS_(2))has been considered a promising anode material for lithium-ion batteries(LIBs)due to its high theoretical capacity of 870 mA h g^(-1).However,its practical applications have been hampered by u...Cobalt disulfide(CoS_(2))has been considered a promising anode material for lithium-ion batteries(LIBs)due to its high theoretical capacity of 870 mA h g^(-1).However,its practical applications have been hampered by undesirable cycle life and rate performance due to the volume change and deterioration of electronic conductivity during the dischargecharge process.In this study,an interconnected CoS_(2)/N-doped carbon/carbon nanotube(CoS_(2)/NC-CNTs-700)network was successfully prepared to boost its lithium storage performance,in which small-size CoS_(2)nanoparticles were confined by N-doped carbon and uniformly decorated on the surface of CNTs.N-doped carbon can effectively accommodate the large volume expansion of CoS_(2)nanoparticles.Additionally,the 3D conductive nanostructure design offers adequate electrical/mass transport spacing.Benefiting from this,the CoS_(2)/NCCNTs-700 electrode demonstrates a long cycle life(a residual capacity of 719 mA h g^(-1)after 100 cycles at 0.2 A g^(-1))and outstanding rate performance(335 mA hg^(-1)at 5.0 A g^(-1)).This study broadens the design and application of CoS_(2)and fosters the advances in battery anode research.展开更多
Aims Sexual dimorphism is a common trait in plants with sex separation,which could influence female and male functions differently.In a subdioecious population of Dasiphora glabra on the Qinghai-Tibet Plateau,we inves...Aims Sexual dimorphism is a common trait in plants with sex separation,which could influence female and male functions differently.In a subdioecious population of Dasiphora glabra on the Qinghai-Tibet Plateau,we investigated sexual dimorphism of floral traits and their effects on pollinator visitation,pollen flow and seed production.We also examined differences in genome size of hermaphroditic and dioecious plants.Methods We examined sexual dimorphism in flower number,flower size,and pollen and ovule production in a subdioecious population of D.glabra.We compared pollinator visitation,pollen dispersal and seed production between sexes.We also examined the genome size of three sex morphs using flow cytometry.Important Findings The number of hermaphroditic plants was significantly more than that of male and female plants,and dioecious plants accounted for ca.40%in the study population.Hermaphroditic plants produced significantly more flowers than male and female plants.Flower size of male flowers was significantly larger than that of female and hermaphroditic flowers.Male flowers did not produce more pollen grains than hermaphroditic flowers,but female flowers produced more ovules than hermaphroditic flowers.Flies were the most frequent flower visitors and preferred large flowers,but their movements between flowers did not show any preference to large flowers.Simulated pollen flows suggested that effective pollen transfer was generally low for both hermaphroditic and male flowers,corresponding to the low seed set of naturally pollinated flowers.DNA contents of male and female plants were ca.four times than those of hermaphroditic plants.These results suggest male and female individuals have undergone polyploidy events and thus are not compatible with hermaphroditic individuals.Sexual dimorphism in floral traits in relation to pollination of dioecious plants might show an advantage in female and male functions,but this advantage is masked largely by low effectiveness of pollen transfer.展开更多
文摘According to conventional theory, little genomic changes should occur in homozygous and stable amphiploids of the grass family, particularly those involving polyploid wheat as a parent. In the present study, however, extensive genomic changes were detected in two octoploid partial amphiploids of common wheat (Triticum aestivum L.)_wheatgrass (Agropyron intermedium (Host) P.B.=Elytrigia intermedia (Host) Nevski=Thinopyrum intermedium (Host) Barkworth and Dewey), namely Zhong 3 and Zhong 5, by RFLP analysis using 10 low_copy, wheat chromosome_specific sequences and 33 representative homoeologous group_specific sequences as probes. Genomic changes involved loss of wheat hybridization fragment(s) and/or acquisition of new fragment(s). Uniformity of the RFLP patterns among 5 individual plants taken respectively from Zhong 3 and Zhong 5 in two successive generations, suggested that genomic changes probably had occurred in the early few generations after octoploid amphiploid formation, and remained essentially static thereafter. The highly similar RFLP patterns between Zhong 3 and Zhong 5, which had identical genomic constitution but differed from each other due to involvement of different wheat varieties as parents imply that genomic changes were probably not at random. Possible causes for the extensive and rapid genomic changes in the newly formed plant amphiploids, as well as their implications for polyploid genome evolution and breeding application are discussed.
基金supported by the NSFC 40830106 and 40975038Innovation Group Project 40921004Ministry of Science and Technology of China(National Key Program for Developing Basic Science 2007CB411803 and 2010CB428904)
文摘Based on simulations of the IPCC 20C3M and SRES A1B experiments in ten coupled models, the Asian summer mon-soon (ASM) response to CO2 doubling and the different responses among models are examined. Nine models show the similar results that the weakening of land-ocean thermal contrast caused by the CO2 doubling contributes to a weaker large-scale ASM circulation. Further analysis in this study also shows that the major ASM components,such as the Somali cross-equatorial flow,the low level India-South China Sea monsoon trough,and the upper level tropical easterly jet stream, weaken as CO2 doubles.However,the ASM rainfall increases as a result of the increased moisture from the warmer Indian Ocean and the South China Sea, and the enhanced northward moisture transport over the ASM region.For the response of enhanced northward moisture transport over South Asia, the positive contribution of moisture content increase in the Indian Ocean is dominant and the negative contribution of the weaker mon-soon circulation is secondary at 850 hPa,but both have positive contribution to the total moisture transport along the East China coast.The paradox of the weaker ASM circulation and the increasing precipitation in CO2 doubling is confirmed.It is found that strengthening of northward moisture transport could intensify the precipitation and atmospheric heat source over the north Arabian Sea and East China,and result in enhanced southwesterly at 850 hPa as global warming occurs.All ten models show significant enhanced southwesterly response over the north Arabian Sea,and six of them show enhanced southwesterly response along the East China coast.
基金jointly funded by the National Key Research and Development Program of Chinagrant number 2017YFA0604004the National Natural Science Foundation of China grant numbers 41530426+1 种基金91737306,U1811464,91837101,41730963,and 91958201the Strategic Priority Research Program of the Chinese Academy of Sciences grant numbers XDA19060102 and XDB40030205。
文摘The datasets of the Chinese Academy of Sciences(CAS)Flexible Global Ocean–Atmosphere–Land System(FGOALS-f3-L)model for the baseline experiment of the fully coupled runs in the Diagnostic,Evaluation and Characterization of Klima(DECK)common experiments of phase 6 of the Coupled Model Intercomparison Project(CMIP6)are described in this study.The CAS FGOALS-f3-L model team submitted the pi Control run with a near equilibrium ocean state for 561 model years,and 160-year integrations for three ensemble members of abrupt-4×CO2 and 1pct CO2,respectively.The ensemble members restart from the 600,650 and 700 model years in the pi Control run,respectively.The baseline performances of the model are validated in this article.The preliminary evaluation suggests that the CAS FGOALS-f3-L model can preserve the long-term stability well for a mean net radiation flux of 0.31 W m-2at the top of the atmosphere,and a limited decreasing trend of-0.03 W m-2/100 yr.The global annual mean SST is 16.45°C for the 561-year mean,with an increase of 0.03°C/100 yr.The model captures the basic spatial patterns of climate-mean SST and precipitation,but still underestimates the SST over the warm pool.The coupled model mitigates the precipitation bias in the ITCZ compared with the results from CMIP5.Moreover,the model’s climate sensitivity represented by the equilibrium climate sensitivity has been reduced from 4.5°C in CMIP5 to 3.0°C in CMIP6.All these datasets contribute to the benchmark of model behaviors for the desired continuity of CMIP.
文摘The purpose of this paper is to present a simple way to approximate the dependence of the global mean air temperature at Earth's surface on atmospheric concentration of carbon dioxide. Current discussions include energy aspects of the greenhouse effect and the global warming. The starting point for the research are laws of thermodynamics, energy equilibrium and absorption and emission property of the atmosphere. According to the calculations, the natural and the anthropogenic changes effect the atmosphere. By the year 2100 the CO2 concentration will be doubled in comparison with the value of the pre-industrial ages. The doubled CO2 concentration will mean a temperature change about 1 ℃-1.5 ℃.
基金the National Postdoctoral Program for Innovative Talents(BX20190157)the General Financial Grant from China Postdoctoral Science Foundation(2019M660979)+3 种基金the Fundamental Research Funds for the Central Universities,Nankai University(63201059)the Program of Introducing Talents of Discipline to Universities(B18030)the National Natural Science Foundation of China(21421001 and 21531005)the Natural Science Foundation of Tianjin(19JCZDJC37200)。
文摘Cobalt disulfide(CoS_(2))has been considered a promising anode material for lithium-ion batteries(LIBs)due to its high theoretical capacity of 870 mA h g^(-1).However,its practical applications have been hampered by undesirable cycle life and rate performance due to the volume change and deterioration of electronic conductivity during the dischargecharge process.In this study,an interconnected CoS_(2)/N-doped carbon/carbon nanotube(CoS_(2)/NC-CNTs-700)network was successfully prepared to boost its lithium storage performance,in which small-size CoS_(2)nanoparticles were confined by N-doped carbon and uniformly decorated on the surface of CNTs.N-doped carbon can effectively accommodate the large volume expansion of CoS_(2)nanoparticles.Additionally,the 3D conductive nanostructure design offers adequate electrical/mass transport spacing.Benefiting from this,the CoS_(2)/NCCNTs-700 electrode demonstrates a long cycle life(a residual capacity of 719 mA h g^(-1)after 100 cycles at 0.2 A g^(-1))and outstanding rate performance(335 mA hg^(-1)at 5.0 A g^(-1)).This study broadens the design and application of CoS_(2)and fosters the advances in battery anode research.
基金by Natural Science Foundation of China(31570385).
文摘Aims Sexual dimorphism is a common trait in plants with sex separation,which could influence female and male functions differently.In a subdioecious population of Dasiphora glabra on the Qinghai-Tibet Plateau,we investigated sexual dimorphism of floral traits and their effects on pollinator visitation,pollen flow and seed production.We also examined differences in genome size of hermaphroditic and dioecious plants.Methods We examined sexual dimorphism in flower number,flower size,and pollen and ovule production in a subdioecious population of D.glabra.We compared pollinator visitation,pollen dispersal and seed production between sexes.We also examined the genome size of three sex morphs using flow cytometry.Important Findings The number of hermaphroditic plants was significantly more than that of male and female plants,and dioecious plants accounted for ca.40%in the study population.Hermaphroditic plants produced significantly more flowers than male and female plants.Flower size of male flowers was significantly larger than that of female and hermaphroditic flowers.Male flowers did not produce more pollen grains than hermaphroditic flowers,but female flowers produced more ovules than hermaphroditic flowers.Flies were the most frequent flower visitors and preferred large flowers,but their movements between flowers did not show any preference to large flowers.Simulated pollen flows suggested that effective pollen transfer was generally low for both hermaphroditic and male flowers,corresponding to the low seed set of naturally pollinated flowers.DNA contents of male and female plants were ca.four times than those of hermaphroditic plants.These results suggest male and female individuals have undergone polyploidy events and thus are not compatible with hermaphroditic individuals.Sexual dimorphism in floral traits in relation to pollination of dioecious plants might show an advantage in female and male functions,but this advantage is masked largely by low effectiveness of pollen transfer.