This paper proposes a decoupling control scheme with two-degrees-of-freedom (2DOF) control structure. In the proposed scheme, two multivariable controllers are designed based on Internal Model Control (IMC) theory for...This paper proposes a decoupling control scheme with two-degrees-of-freedom (2DOF) control structure. In the proposed scheme, two multivariable controllers are designed based on Internal Model Control (IMC) theory for setpoint tracking and disturbance rejection independently. An analytical approximation method is utilized to reduce the order of the controllers. By adjusting the corresponding controller parameter, the setpoint tracking and disturbance rejection of each control loop can be tuned independently. In the presence of multiplicative input uncertainty, a calculation method is also proposed to derive the low bounds of the control parameters in order to guarantee the robust stability of the system. Simulations are illustrated to demonstrate the validity of the proposed control scheme.展开更多
A process represented by nonlinear multi-parametric binary dynamic system is investigated in this work. This process is characterized by the pseudo Boolean objective functional. Since the transfer functions on the pro...A process represented by nonlinear multi-parametric binary dynamic system is investigated in this work. This process is characterized by the pseudo Boolean objective functional. Since the transfer functions on the process are Boolean functions, the optimal control problem related to the process can be solved by relating between the transfer functions and the objective functional. An analogue of Bellman function for the optimal control problem mentioned is defined and consequently suitable Bellman equation is constructed.展开更多
基金NSFC (No.60704021,60474031) , NCET (No.04-0383)Australia-China Special Fund for Scientific & Technological Cooperation
文摘This paper proposes a decoupling control scheme with two-degrees-of-freedom (2DOF) control structure. In the proposed scheme, two multivariable controllers are designed based on Internal Model Control (IMC) theory for setpoint tracking and disturbance rejection independently. An analytical approximation method is utilized to reduce the order of the controllers. By adjusting the corresponding controller parameter, the setpoint tracking and disturbance rejection of each control loop can be tuned independently. In the presence of multiplicative input uncertainty, a calculation method is also proposed to derive the low bounds of the control parameters in order to guarantee the robust stability of the system. Simulations are illustrated to demonstrate the validity of the proposed control scheme.
文摘A process represented by nonlinear multi-parametric binary dynamic system is investigated in this work. This process is characterized by the pseudo Boolean objective functional. Since the transfer functions on the process are Boolean functions, the optimal control problem related to the process can be solved by relating between the transfer functions and the objective functional. An analogue of Bellman function for the optimal control problem mentioned is defined and consequently suitable Bellman equation is constructed.