Based on the available experimental data,the Bi-Ni binary system was optimized thermodynamically by the CALPHAD method.The solution phases,including liquid,fcc_A1(Ni) and rhombohedral_A7(Bi),were described as subs...Based on the available experimental data,the Bi-Ni binary system was optimized thermodynamically by the CALPHAD method.The solution phases,including liquid,fcc_A1(Ni) and rhombohedral_A7(Bi),were described as substitutional solution phases,of which the excess Gibbs energies were expressed with the Redlich-Kister polynomial.The intermetallic compound,BiNi,was modeled using three sublattices(Bi)(Ni,Va)(Ni,Va) considering its crystal structure(NiAs-type) and the compatibility of thermodynamic database in the multi-component systems,while Bi3Ni was treated as a stoichiometric compound.Finally,a set of self-consistent thermodynamic parameters formulating the Gibbs energies of various phases in this binary system were obtained.The calculated results are in reasonable agreement with the reported experimental data.展开更多
On the basis of the experimental data of phase equilibria and thermochemical properties available from literatures, a critical assessment for the Ni?Yb binary system was carried out using the CALPHAD (calculation of p...On the basis of the experimental data of phase equilibria and thermochemical properties available from literatures, a critical assessment for the Ni?Yb binary system was carried out using the CALPHAD (calculation of phase diagrams) method. The liquid phase is modeled as the associate model with the constituent species Ni, Yb and YbNi3, owing to the sharp change of the enthalpy of mixing of liquid phase at the composition of around 25% Yb (mole fraction). The terminal solid solutions FCC_A1 (Ni/Yb) and BCC_A2 (Yb) are described by the substitutional solution model with the Redlich?Kister polynomial. The intermetallic compounds, Yb2Ni17, YbNi5, YbNi3, YbNi2, α-YbNi and β-YbNi, are treated as strict stoichiometric compounds, since there are no noticeable homogeneity ranges reported for these compounds. A set of self-consistent thermodynamic parameters for the Ni?Yb binary system are obtained. According to the presently assessed results, the thermochemical properties and the phase boundary data can be well reproduced.展开更多
From the Gibbs free energy and the equations of two-phase equilibrium curves of the two-dimensionalbinary system which has the Lennard-Jones potential, using the Collins model, the eutectic-type phase diagram and thep...From the Gibbs free energy and the equations of two-phase equilibrium curves of the two-dimensionalbinary system which has the Lennard-Jones potential, using the Collins model, the eutectic-type phase diagram and theperitectic-type phase diagram of the binary system are obtained, whose results are quite similar to the behavior of thethree-dimensional (3D) substances.展开更多
基金Projects(50371104,50771106and50731002)supported by the National Natural Science Foundation of ChinaProject(2008K22)supported by the Scientific Research Foundation of Hunan Provincial Department of Land&Resources,ChinaProject supported by Geology Exploration Foundation of Hunan Provincial Department of Land&Resources,China
文摘Based on the available experimental data,the Bi-Ni binary system was optimized thermodynamically by the CALPHAD method.The solution phases,including liquid,fcc_A1(Ni) and rhombohedral_A7(Bi),were described as substitutional solution phases,of which the excess Gibbs energies were expressed with the Redlich-Kister polynomial.The intermetallic compound,BiNi,was modeled using three sublattices(Bi)(Ni,Va)(Ni,Va) considering its crystal structure(NiAs-type) and the compatibility of thermodynamic database in the multi-component systems,while Bi3Ni was treated as a stoichiometric compound.Finally,a set of self-consistent thermodynamic parameters formulating the Gibbs energies of various phases in this binary system were obtained.The calculated results are in reasonable agreement with the reported experimental data.
基金Project(51271027)supported by the National Natural Science Foundation of ChinaProject(T201308)supported by Shenzhen Key Laboratory of Special Functional Materials of Shenzhen University,China
文摘On the basis of the experimental data of phase equilibria and thermochemical properties available from literatures, a critical assessment for the Ni?Yb binary system was carried out using the CALPHAD (calculation of phase diagrams) method. The liquid phase is modeled as the associate model with the constituent species Ni, Yb and YbNi3, owing to the sharp change of the enthalpy of mixing of liquid phase at the composition of around 25% Yb (mole fraction). The terminal solid solutions FCC_A1 (Ni/Yb) and BCC_A2 (Yb) are described by the substitutional solution model with the Redlich?Kister polynomial. The intermetallic compounds, Yb2Ni17, YbNi5, YbNi3, YbNi2, α-YbNi and β-YbNi, are treated as strict stoichiometric compounds, since there are no noticeable homogeneity ranges reported for these compounds. A set of self-consistent thermodynamic parameters for the Ni?Yb binary system are obtained. According to the presently assessed results, the thermochemical properties and the phase boundary data can be well reproduced.
文摘From the Gibbs free energy and the equations of two-phase equilibrium curves of the two-dimensionalbinary system which has the Lennard-Jones potential, using the Collins model, the eutectic-type phase diagram and theperitectic-type phase diagram of the binary system are obtained, whose results are quite similar to the behavior of thethree-dimensional (3D) substances.