From June 2008 to August 2013,approximately 67 kt of CO_(2) was injected into a deep saline formation at the Ketzin pilot CO_(2) storage site.During injection,3D seismic surveys have been performed to monitor the migr...From June 2008 to August 2013,approximately 67 kt of CO_(2) was injected into a deep saline formation at the Ketzin pilot CO_(2) storage site.During injection,3D seismic surveys have been performed to monitor the migration of sequestered CO_(2).Seismic monitoring results are limited by the acquisition and signal-to-noise ratio of the acquired data.The multiphysical reservoir simulation provides information regarding the CO_(2) fluid behavior,and the approximated model should be calibrated with the monitoring results.In this work,property models are delivered from the multiphysical model during 3D repeated seismic surveys.The simulated seismic data based on the models are compared with the real data,and the results validate the effectiveness of the multiphysical inversion method.Time-lapse analysis shows the trend of CO_(2) migration during and after injection.展开更多
4-Hexylresorcinol(4-HR),a potent tyrosinase inhibitor,has been used as an even-tone active ingredient for skin care application since 2007.While the skin brightening efficacy of 4-HR in Chinese population has not been...4-Hexylresorcinol(4-HR),a potent tyrosinase inhibitor,has been used as an even-tone active ingredient for skin care application since 2007.While the skin brightening efficacy of 4-HR in Chinese population has not been thoroughly investigated and its significance in keratinocytes has not been fully raveled.This study aims to evaluate the skin brightening potential of 4-HR in vivo and in vitro and explore its new mechanism of action through transcriptome approach.The skin brightening effect of 0.4%4-HR in a facial serum was assessed in an 8-week,double-blinded,placebo-controlled,and randomized clinical study in 67 Chinese participants.ITA°,melanin index(MI)and visual grading were measured at baseline and 2,4 and 8 weeks after use.A pigmented living skin equivalent(pLSE)model constructed from Asian skin cells was utilized to assess the brightening efficacy of 0.4%4-HR by measuring the model’s brightness(L^(*)value)and melanin content.Then,transcriptomic analysis of 4-HR treated human epidermal keratinocytes was conducted,and the two in vitro models were adopted for hypothesis validation afterwards.In the clinical study,the result shows both 0.4%4-HR serum and placebo chassis can significantly improve all measures as compared to baseline at the 2,4,and 8 weeks.Furthermore,0.4%HR serum demonstrates a better performance in increasing ITA°as early as 2 weeks of application and decreasing MI value than the placebo group at Week 2.In the pLSE model,0.4%4-HR with topical application evidently increases L^(*)value by 15.88%and decreases melanin content by 47.61%compared to UVB group.RNA-sequencing analysis implies that 4-HR can regulate multiple biological processes including skin development,keratinocyte differentiation,oxidant activity and autophagy function.In the blue-light challenged human keratinocytes model,4-HR shows a significant ROS suppression capacity.In the keratinocytes-melanocytes co-culture model,4-HR prompts autophagy activity and decreases melanin content.Most importantly,the melanin inhibitory activity of 4-HR is compromised after co-treating with Chloroquine,an autophagy inhibitor,suggesting autophagy regulation property of 4-HR may partially contribute to its skin brightening efficacy.Taken together,these data demonstrate skin brightening efficacy of 0.4%4-HR in vivo and in vitro,in addition to acting as a tyrosinase inhibitor,4-HR can contribute to skin brightening benefit via enhancing cellular antioxidant capacity and autophagy activation.展开更多
Four diterpenoids, including a new ent-kaurane diterpene (1), were isolated from the rhizome of Aralia fargesii Franch. On the basis of chemical and spectral evidence (IR, EI-MS, HREI-MS, H-1-NMR, C-13-NMR and HMQC), ...Four diterpenoids, including a new ent-kaurane diterpene (1), were isolated from the rhizome of Aralia fargesii Franch. On the basis of chemical and spectral evidence (IR, EI-MS, HREI-MS, H-1-NMR, C-13-NMR and HMQC), the structure of compound 1 was established to be 17-acetoxy-16alpha-ent-kauran-19-oic acid The other three known compounds were identified as ent-pimera-8(14) 15-dien-19-oic acid (2), 16alpha-hydroxy-( -)-kauran-19-oic acid (3) and 16alpha-17-dihydroxy-ent-kauran-19-oic acid (4). The three known diterpenoids were obtained from this plant for the first time.展开更多
A titania support with a large surface area was developed, which has a BET surface area of 380.5 m^2/g, four times that of a traditional titania support. The support was ultrasonically impregnated with 5 wt% vanadia. ...A titania support with a large surface area was developed, which has a BET surface area of 380.5 m^2/g, four times that of a traditional titania support. The support was ultrasonically impregnated with 5 wt% vanadia. A special heat treatment was used in the calcination to maintain the large surface area and high dispersion of vanadium species. This catalyst was compared to a common V2O5-TiO2 catalyst with the same vanadia loading prepared by a traditional method. The new catalyst has a surface area of 117.7 m^2/g, which was 38% higher than the traditional V2O5-TiO2 catalyst. The selective catalytic reduction(SCR) performance demonstrated that the new catalyst had a wider temperature window and better N2 selectivity compared to the traditional one. The NO conversion was 80% from 200 to 450 °C. The temperature window was 100 °C wider than the traditional catalyst. Raman spectra indicated that the vanadium species formed more V-O-V linkages on the catalyst prepared by the traditional method. The amount of V-O-Ti and V=O was larger for the new catalyst. Temperature programmed desorption of NH3, temperature programmed reduction by H2 and X-ray photoelectron spectroscopy results showed that its redox ability and total acidity were enhanced. The results are helpful for developing a more efficient SCR catalyst for the removal of NOx in flue gases.展开更多
The effects of O2 and the supported Pt nano-particles on the mechanisms and kinetics of the carbon support corrosion are investigated by monitoring the CO2 production using differential electrochemical mass spectromet...The effects of O2 and the supported Pt nano-particles on the mechanisms and kinetics of the carbon support corrosion are investigated by monitoring the CO2 production using differential electrochemical mass spectrometry in a dual-thin layer flow cell. Carbon can be oxidized in different distinct potential regimes; O2 accelerates carbon oxidation, the rates of CO2 production from carbon oxidation in O2 saturated solution are two times of that in N2 saturated solution at the same potential; Pt can catalyze the carbon oxidation, with supported Pt nanoparticles, the overpotential for carbon oxidation is much smaller than that without loading in the carbon electrode. The mechanism for the enhanced carbon oxidation by Pt and O2 are discussed.展开更多
Nanocrystalline,single-phase undoped In 2O 3 was prepared by a polymer-network synthesis technique with indium nitrate as the starting material;several methods such as X-ray diffractometry (XRD) and transmission ele...Nanocrystalline,single-phase undoped In 2O 3 was prepared by a polymer-network synthesis technique with indium nitrate as the starting material;several methods such as X-ray diffractometry (XRD) and transmission electron microscopy (TEM) were employed to obtain detailed information on the crystallography and microstructual appearance of In 2O 3 superfine powders. The influence of the concentration of starting solution,calcination temperature and time on the particle size was also that investigated by means of the XRD patterns. Results indicate that the obtained powders are mostly crystalline single phase with uniform size and also that the size of the products can be controlled under proper condition.展开更多
CO2 concentrations at different heights in a broadleaved/Korean forest (with a mean height of 26 m) were measured with infrared gas analyzer IRGA (model 2250D, LI-COR Inc. and LI-COR, 820) from Aug. to Oct. of 1999, A...CO2 concentrations at different heights in a broadleaved/Korean forest (with a mean height of 26 m) were measured with infrared gas analyzer IRGA (model 2250D, LI-COR Inc. and LI-COR, 820) from Aug. to Oct. of 1999, Apr. to Jul. of 2000, and from Aug. 2002 to Sept. 2003. Based on the collected dada, the diurnal and seasonal dynamics of profiles and storage of carbon dioxide in the forest were analyzed. The diurnal CO2 profiles showed that the vertical distribution of CO2 concentration were different for daytime and nighttime, and the CO2 concentration was highest close to forest floor, no matter at daytime and nighttime. The seasonal profiles of CO2 showed that stratification in the canopy was evident during growth season. CO2 concentrations at different heights (60 m to 2.5 m) had a little change in March, with a difference of 10 mmolmol-1, but had a significant change in July, with a difference of 60 mmolmol-1. In July, there also existed a greater gradient of CO2 concentrations at canopy (22, 26 and 32 m), with a difference of 8 mmolmol-1. The calculated total storage (ΔC/Δt ) of CO2 in the air column with height of 40 m beneath eddy covariance instrument was negative, and made a little contribution to NEE.展开更多
A molten salt method was developed to prepare porous La1‐xSrxMn0.8Fe0.2O3 (0≤ x ≤ 0.6) micro‐spheres using hierarchical porous δ‐MnO2 microspheres as a template in eutectic NaNO3‐KNO3. X‐ray diffraction patt...A molten salt method was developed to prepare porous La1‐xSrxMn0.8Fe0.2O3 (0≤ x ≤ 0.6) micro‐spheres using hierarchical porous δ‐MnO2 microspheres as a template in eutectic NaNO3‐KNO3. X‐ray diffraction patterns showed that single phase LaMn0.8Fe0.2O3 with good crystallinity was syn‐thesized at 450℃ after 4 h. Transmission electron microscope images exhibited that the LaMn0.8Fe0.2O3 sample obtained at 450?? after 4 h possessed a porous spherical morphology com‐posed of aggregated nanocrystallites. Field emission scanning electron microscope images indicated that the growth of the porous LaMn0.8Fe0.2O3 microspheres has two stages. SEM pictures showed that a higher calcination temperature than 450?? had an adverse effect on the formation of a po‐rous spherical structure. The LaMn0.8Fe0.2O3 sample obtained at 450?? after 4 h displayed a high BET surface area of 55.73 m2/g with a pore size of 9.38 nm. Fourier transform infrared spectra suggested that Sr2+ions entered the A sites and induced a decrease of the binding energy between Mn and O. The CO conversion with the La1‐xSrxMn0.8Fe0.2O3 (0≤x≤0.6) samples indicated that the La0.4Sr0.6Mn0.8Fe0.2O3 sample had the best catalytic activity and stability. Further analysis by X‐ray photoelectron spectroscopy demonstrated that Sr2+doping altered the content of Mn4+ions, oxygen vacancies and adsorbed oxygen species on the surface, which affected the catalytic performance for CO oxidation.展开更多
Aboveground vertical profiles of N2O concentrations were measured with in two natural coniferous-deciduous mixed forests of 1998 and 1999 in Changbai M ountain. Significant high N2O concentrations were found in six pr...Aboveground vertical profiles of N2O concentrations were measured with in two natural coniferous-deciduous mixed forests of 1998 and 1999 in Changbai M ountain. Significant high N2O concentrations were found in six profiles out of t welve profiles. The results showed that high concentrations were 3.03% to 64.9% higher than the "normal concentrations" in these six profiles. Differences betwe en the high concentrations and the "normal concentrations" were statistically si gnificant. The simultaneous occurrence of high concentrations at/nearby the cano py height and normal concentrations at the trunk space height indicated an efflu x of N2O from foliage to atmosphere. This study afforded evidence supporting tha t plant per se, besides forest soil, was an important source of atmospheric N2O in a forest ecosystem.展开更多
[Objective] The research aimed at cloning and analyzing mitochondrial cytochrome oxidase I gene(cox 1)of C.suppressalis.[Method] The mitochondrial cox 1 gene of C.suppressalis was cloned with PCR method and sequence...[Objective] The research aimed at cloning and analyzing mitochondrial cytochrome oxidase I gene(cox 1)of C.suppressalis.[Method] The mitochondrial cox 1 gene of C.suppressalis was cloned with PCR method and sequenced.Then,cox1 sequences of other 21 Lepidopteran species were obtained by blasting the GenBank with cox 1 gene sequence of C.suppressalis.Finally,homology comparison and molecular phylogenitic analysis among the 22 Lepidopteran species were conducted.[Result] The open reading frame of cox 1 gene from C.suppressalis contained 1 531 nucleotides encoding a putative protein of 510 amino acids.The cox1 gene used a start codon CGA,and an incomplete termination codon composed of only T.Based on the amino acid sequences of cox 1,the molecular phylogenetic tree of Lepidoptera was reconstructed using the maximum likelihood(ML)method.The molecular phylogenetic tree was similar to the morphological phylogenetic tree mainly,but also showed some differences.[Conclusion] The result will provide reference for further research on expression and application of cox 1 gene.展开更多
Catalysis effect of triphenyl bismuth (TPB) on kinetics of hydroxyl terminated polybutadiene-toluene diisocyanate (HTPB-TDI) curing reaction was studied by non-isothermal differential scanning calorimetry (DSC)....Catalysis effect of triphenyl bismuth (TPB) on kinetics of hydroxyl terminated polybutadiene-toluene diisocyanate (HTPB-TDI) curing reaction was studied by non-isothermal differential scanning calorimetry (DSC). The characteristic temperature of curing system was measured for calculating kinetic parameters and establishing curing reaction kinetic equations. The results show that activation energy (Ea) of uncatalyzed HTPB-TDI curing system is 51.29 kJmol-1, and TPB decreases Ea to 46.43 kJ'mol-1. Catalyst lowers reaction temperature and shortens curing time through decreasing ac- tivation energy of curing reaction and accelerating reaction rate. TPB can increase the reaction rate at 27 ℃ to the value of uncatalyzed system at 80 ℃. The catalytic activity reaches the maximum when concentration is 0.5 %.展开更多
This work presents the visible-light photocatalytic selective oxidation of thiols to disulfides with molecular oxygen(O2) on anatase TiO2. The high specific surface area of anatase TiO2 proved to be especially critica...This work presents the visible-light photocatalytic selective oxidation of thiols to disulfides with molecular oxygen(O2) on anatase TiO2. The high specific surface area of anatase TiO2 proved to be especially critical in conferring high photocatalytic activity. Herein, surface complexation between thiol and TiO2 gives rise to photocatalytic activity under irradiation with 520 nm green light-emitting diodes(LEDs), resulting in excellent reaction activity, substrate scope, and functional group tolerance. The transformation was extremely efficient for the selective oxidation of various thiols, particularly with substrates bearing electron-withdrawing groups(reaction times of less than 10 min). To date, the longest wavelength of visible light that this system can utilize is 520 nm by the surface complex of substrate-TiO2. Importantly, O2 was found to act as the electron and proton acceptor, rather than to incorporate into the substrates. Our findings regarding this surface complex-based photocatalytic system can allow one to understand the interaction between the conduction band electrons and O2.展开更多
Shenfu coal was extracted with 0S2, n-hexane, benzene sequentially. The extracts were analyzed with GC/MS. It is presented that group seperation of soluble organic compounds in the coal can be achieved by fractionated...Shenfu coal was extracted with 0S2, n-hexane, benzene sequentially. The extracts were analyzed with GC/MS. It is presented that group seperation of soluble organic compounds in the coal can be achieved by fractionated extraction using different solvents. Main components in CS2 soluble fraction from Shenfu coal are alkyl-substituted arenes. Aliphatic hydrocarbons are overwhelmingly predominant in n-hexane-soluble fraction. Dito tricyclic aramatic hydrocarbons are identified in benzene-soluble fraction. The molecular structures detection of 2, 4, 6-trichlorobenzenamine and 3, 3', 4, 4', 5, 5'-hexachloro-1, 1'- biphenyl and 2-chlorocyclohexanol firstly provide information for existence form of chlorine in coal.展开更多
We report on the photodissociation dynamics of CO2^+ via its A2Пu,1/2 state using the scheme of [1+1] photon excitation that is intermediated by the mode-selected A2Hu,1/2(Vl,V2,0) vibronic states. Photodissociat...We report on the photodissociation dynamics of CO2^+ via its A2Пu,1/2 state using the scheme of [1+1] photon excitation that is intermediated by the mode-selected A2Hu,1/2(Vl,V2,0) vibronic states. Photodissociation fragment exciation spectrum and images of photofragment CO+ have been measured to obtain reaction dynamics parameters such as the available energy and the average translational energy. Combining with the potential energy functions of CO2^+, the dissociation mechanism of CO2^+ is discussed. The conformational variation of CO2^+ from linear to bent on the photodissociation dynamics of CO2^+ is verified.展开更多
In this work, supramolecular fixation of three amines, including aniline, ethylenediamine, and diethylamine, using cobalt tetraphenylporphyrin (CoTPP) for SO2 removal was studied using UV-Vis and fluorescence measur...In this work, supramolecular fixation of three amines, including aniline, ethylenediamine, and diethylamine, using cobalt tetraphenylporphyrin (CoTPP) for SO2 removal was studied using UV-Vis and fluorescence measurements. The UV-Vis spectra showed that increasing amines concentrations resulted in bathochromic shift for CoTPP Soret absorption band (B band). Once SO2 was introduced, it competed with CoTPP for aniline, ethylenediamine, and diethylamine, which eventually led to the release of CoTPP and the change of solution colour/absorption band. After that, the CoTPP was regenerated and got back to the first state. The fluorescence spectra offered that CoTPP interacted with aniline, ethylenediamine, and diethylamine to form 1:1 molecular adducts. The interactions of CoTPP with aniline, ethylenediamine, and diethylamine were entropy-driven. The interaction of CoTPP with aniline and diethylamine was endothermic, and that with ethylenediamine was exothermic. Ethylenediamine presented a stronger binding constant value for CoTPP, so it was considered as a potential agent for SO2 removal.展开更多
The 0.4 nm molecular sieve supported Cu-Ni bimetal catalysts for direct synthesis of dimethyl carbonate (DMC) from CO 2 and CH 3 OH were prepared and investigated. The synthesized catalysts were fully characterized by...The 0.4 nm molecular sieve supported Cu-Ni bimetal catalysts for direct synthesis of dimethyl carbonate (DMC) from CO 2 and CH 3 OH were prepared and investigated. The synthesized catalysts were fully characterized by BET, XRD (X-ray diffraction), TPR (temperature programmed reduction), IR (infra-red adsorption), NH 3-TPD (temperature programmed desorption) and CO 2-TPD (temperature programmed desorption) techniques. The results showed that the surface area of catalysts decreased with increasing metal content, and the metals as well as Cu-Ni alloy co-existed on the reduced catalyst surface. There existed interaction between metal and carrier, and moreover, metal particles affected obviously the acidity and basicity of carrier. The large amount of basic sites facilitated the activation of methanol to methoxyl species and their subsequent reaction with activated carbon dioxide. The catalysts were evaluated in a continuous tubular fixed-bed micro-gaseous reactor and the catalyst with bimetal loading of 20% (by mass) had best catalytic activities. Under the conditions of 393 K, 1.1 MPa, 5 h and gas space velocity of 510 h 1 , the selectivity and yield of DMC were higher than 86.0 % and 5.0 %, respectively.展开更多
Objective: To detect the action of arsenic trioxide (As_2O_3) on theexpression of Tumor drug-resistant molecule. Methods: APL cell line MR_2 resistant to all-transretin-oic acid (ATRA ) was put into research, while AP...Objective: To detect the action of arsenic trioxide (As_2O_3) on theexpression of Tumor drug-resistant molecule. Methods: APL cell line MR_2 resistant to all-transretin-oic acid (ATRA ) was put into research, while APL cell line NB_4 was used for control. Theim-munocytochemical assays were used to detect the expressions of P-glycoprotein (P_(gp)) andGluta-thione S-transferase ( GST) . Results: Not only the expression of P_(gp) in MR_2 cell line(30%-40%) was significantly higher than that in NB4 cell line (10%-20% ) (P < 0.001), but also theexpression of GST in MR_2 cell line (60. 4 +- 4.0 )-( 66.5 +- 4.4) was significantly higher thanthat in NB4 cell line (28.3 +- 5.6)-(31.2 +- 5. l)(P < 0.05). As_2O_3 at the concentration of0.5-2.0 μmol/l could significantly decrease the expression of P_(gp) and GSTπ, but could donothing about the expression of GSTα and GSTμ. Conclusion: The lower expression of P_(gp) andGSTπ might be the sensitive indications of frustrating drug-resistance, while GSTα and GSTμ mightnot be the case. ATRA might be the substrates of P_(gp) transmission and GSTπ catalysis .展开更多
Solar‐driven conversion of carbon dioxide,water and nitrogen into high value‐added fuels(e.g.H_(2),CO,CH_(4),CH_(3)OH,NH_(3) and so on)is regarded as an environmental‐friendly and ideal route for relieving the gree...Solar‐driven conversion of carbon dioxide,water and nitrogen into high value‐added fuels(e.g.H_(2),CO,CH_(4),CH_(3)OH,NH_(3) and so on)is regarded as an environmental‐friendly and ideal route for relieving the greenhouse gas effect and countering energy crisis,which is an attractive and challenging topic.Hence,various types of photocatalysts have been developed successively to meet the requirements of these photocatalysis.Among them,cobalt‐based heterogeneous catalysts emerge as one of the most promising photocatalysts that open up alluring vistas in the field of solar‐to‐fuels conversion,which can effectively enhance photocatalytic efficiency by extending light absorption range,promoting charge separation,providing active sites,and lowering reaction barrier.In this review,we first present the working principles of cobalt‐based heterogeneous catalysts for photocatalytic water splitting,CO_(2) reduction,and N_(2) fixation.Second,five efficient strategies including surface modification,morphology modulation,crystallinity controlling,crystal engineering and doping,are discussed for improving the photocatalytic performance with different types cobalt‐based catalysts(cobalt nanoparticles and single atom,oxides,sulfides,phosphides,MOFs,COFs,LDHs,carbide,and nitrides).Third,we outline the applications for the state‐of‐the‐art photocatalytic CO_(2) reduction and water splitting,and nitrogen fixation over cobalt‐based heterogeneous catalysts.Finally,the central challenges and possible improvements of cobalt‐based photocatalysis in the future are presented.The purpose of this review is to summarize the past experience and lessons,and provide reference for the further development of cobalt‐based photocatalysis technology.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.42025403)the Youth Innovation Promotion Association,Chinese Academy of Sciences(Grant No.2023074).
文摘From June 2008 to August 2013,approximately 67 kt of CO_(2) was injected into a deep saline formation at the Ketzin pilot CO_(2) storage site.During injection,3D seismic surveys have been performed to monitor the migration of sequestered CO_(2).Seismic monitoring results are limited by the acquisition and signal-to-noise ratio of the acquired data.The multiphysical reservoir simulation provides information regarding the CO_(2) fluid behavior,and the approximated model should be calibrated with the monitoring results.In this work,property models are delivered from the multiphysical model during 3D repeated seismic surveys.The simulated seismic data based on the models are compared with the real data,and the results validate the effectiveness of the multiphysical inversion method.Time-lapse analysis shows the trend of CO_(2) migration during and after injection.
文摘4-Hexylresorcinol(4-HR),a potent tyrosinase inhibitor,has been used as an even-tone active ingredient for skin care application since 2007.While the skin brightening efficacy of 4-HR in Chinese population has not been thoroughly investigated and its significance in keratinocytes has not been fully raveled.This study aims to evaluate the skin brightening potential of 4-HR in vivo and in vitro and explore its new mechanism of action through transcriptome approach.The skin brightening effect of 0.4%4-HR in a facial serum was assessed in an 8-week,double-blinded,placebo-controlled,and randomized clinical study in 67 Chinese participants.ITA°,melanin index(MI)and visual grading were measured at baseline and 2,4 and 8 weeks after use.A pigmented living skin equivalent(pLSE)model constructed from Asian skin cells was utilized to assess the brightening efficacy of 0.4%4-HR by measuring the model’s brightness(L^(*)value)and melanin content.Then,transcriptomic analysis of 4-HR treated human epidermal keratinocytes was conducted,and the two in vitro models were adopted for hypothesis validation afterwards.In the clinical study,the result shows both 0.4%4-HR serum and placebo chassis can significantly improve all measures as compared to baseline at the 2,4,and 8 weeks.Furthermore,0.4%HR serum demonstrates a better performance in increasing ITA°as early as 2 weeks of application and decreasing MI value than the placebo group at Week 2.In the pLSE model,0.4%4-HR with topical application evidently increases L^(*)value by 15.88%and decreases melanin content by 47.61%compared to UVB group.RNA-sequencing analysis implies that 4-HR can regulate multiple biological processes including skin development,keratinocyte differentiation,oxidant activity and autophagy function.In the blue-light challenged human keratinocytes model,4-HR shows a significant ROS suppression capacity.In the keratinocytes-melanocytes co-culture model,4-HR prompts autophagy activity and decreases melanin content.Most importantly,the melanin inhibitory activity of 4-HR is compromised after co-treating with Chloroquine,an autophagy inhibitor,suggesting autophagy regulation property of 4-HR may partially contribute to its skin brightening efficacy.Taken together,these data demonstrate skin brightening efficacy of 0.4%4-HR in vivo and in vitro,in addition to acting as a tyrosinase inhibitor,4-HR can contribute to skin brightening benefit via enhancing cellular antioxidant capacity and autophagy activation.
文摘Four diterpenoids, including a new ent-kaurane diterpene (1), were isolated from the rhizome of Aralia fargesii Franch. On the basis of chemical and spectral evidence (IR, EI-MS, HREI-MS, H-1-NMR, C-13-NMR and HMQC), the structure of compound 1 was established to be 17-acetoxy-16alpha-ent-kauran-19-oic acid The other three known compounds were identified as ent-pimera-8(14) 15-dien-19-oic acid (2), 16alpha-hydroxy-( -)-kauran-19-oic acid (3) and 16alpha-17-dihydroxy-ent-kauran-19-oic acid (4). The three known diterpenoids were obtained from this plant for the first time.
基金supported by the National Natural Science Foundation of China(21325731,21221004)the National High Technology Research and Development Program of China(863 Program)the State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex
文摘A titania support with a large surface area was developed, which has a BET surface area of 380.5 m^2/g, four times that of a traditional titania support. The support was ultrasonically impregnated with 5 wt% vanadia. A special heat treatment was used in the calcination to maintain the large surface area and high dispersion of vanadium species. This catalyst was compared to a common V2O5-TiO2 catalyst with the same vanadia loading prepared by a traditional method. The new catalyst has a surface area of 117.7 m^2/g, which was 38% higher than the traditional V2O5-TiO2 catalyst. The selective catalytic reduction(SCR) performance demonstrated that the new catalyst had a wider temperature window and better N2 selectivity compared to the traditional one. The NO conversion was 80% from 200 to 450 °C. The temperature window was 100 °C wider than the traditional catalyst. Raman spectra indicated that the vanadium species formed more V-O-V linkages on the catalyst prepared by the traditional method. The amount of V-O-Ti and V=O was larger for the new catalyst. Temperature programmed desorption of NH3, temperature programmed reduction by H2 and X-ray photoelectron spectroscopy results showed that its redox ability and total acidity were enhanced. The results are helpful for developing a more efficient SCR catalyst for the removal of NOx in flue gases.
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.20773116), the one hundred Talents' Program Sciences, and the National China (No.2010CB923302) of the Chinese Academy of Basic Research Program of
文摘The effects of O2 and the supported Pt nano-particles on the mechanisms and kinetics of the carbon support corrosion are investigated by monitoring the CO2 production using differential electrochemical mass spectrometry in a dual-thin layer flow cell. Carbon can be oxidized in different distinct potential regimes; O2 accelerates carbon oxidation, the rates of CO2 production from carbon oxidation in O2 saturated solution are two times of that in N2 saturated solution at the same potential; Pt can catalyze the carbon oxidation, with supported Pt nanoparticles, the overpotential for carbon oxidation is much smaller than that without loading in the carbon electrode. The mechanism for the enhanced carbon oxidation by Pt and O2 are discussed.
基金TheScientificResearchFoundationfortheReturnedOverseasChineseScholars ,StateEducationMinistry (No . [2 0 0 2 ]2 47)
文摘Nanocrystalline,single-phase undoped In 2O 3 was prepared by a polymer-network synthesis technique with indium nitrate as the starting material;several methods such as X-ray diffractometry (XRD) and transmission electron microscopy (TEM) were employed to obtain detailed information on the crystallography and microstructual appearance of In 2O 3 superfine powders. The influence of the concentration of starting solution,calcination temperature and time on the particle size was also that investigated by means of the XRD patterns. Results indicate that the obtained powders are mostly crystalline single phase with uniform size and also that the size of the products can be controlled under proper condition.
基金This study is supported by The Development Plan of State Key Fundamental Research of China (973) (contract No. 2002CB412502),by Knowledge Innovation Project of CAS (KZCX1-SW-01-03) and by Natural Science Foundation of China (30170167).
文摘CO2 concentrations at different heights in a broadleaved/Korean forest (with a mean height of 26 m) were measured with infrared gas analyzer IRGA (model 2250D, LI-COR Inc. and LI-COR, 820) from Aug. to Oct. of 1999, Apr. to Jul. of 2000, and from Aug. 2002 to Sept. 2003. Based on the collected dada, the diurnal and seasonal dynamics of profiles and storage of carbon dioxide in the forest were analyzed. The diurnal CO2 profiles showed that the vertical distribution of CO2 concentration were different for daytime and nighttime, and the CO2 concentration was highest close to forest floor, no matter at daytime and nighttime. The seasonal profiles of CO2 showed that stratification in the canopy was evident during growth season. CO2 concentrations at different heights (60 m to 2.5 m) had a little change in March, with a difference of 10 mmolmol-1, but had a significant change in July, with a difference of 60 mmolmol-1. In July, there also existed a greater gradient of CO2 concentrations at canopy (22, 26 and 32 m), with a difference of 8 mmolmol-1. The calculated total storage (ΔC/Δt ) of CO2 in the air column with height of 40 m beneath eddy covariance instrument was negative, and made a little contribution to NEE.
基金supported by the National Science Foundation for Young Scientists of China (51202171)~~
文摘A molten salt method was developed to prepare porous La1‐xSrxMn0.8Fe0.2O3 (0≤ x ≤ 0.6) micro‐spheres using hierarchical porous δ‐MnO2 microspheres as a template in eutectic NaNO3‐KNO3. X‐ray diffraction patterns showed that single phase LaMn0.8Fe0.2O3 with good crystallinity was syn‐thesized at 450℃ after 4 h. Transmission electron microscope images exhibited that the LaMn0.8Fe0.2O3 sample obtained at 450?? after 4 h possessed a porous spherical morphology com‐posed of aggregated nanocrystallites. Field emission scanning electron microscope images indicated that the growth of the porous LaMn0.8Fe0.2O3 microspheres has two stages. SEM pictures showed that a higher calcination temperature than 450?? had an adverse effect on the formation of a po‐rous spherical structure. The LaMn0.8Fe0.2O3 sample obtained at 450?? after 4 h displayed a high BET surface area of 55.73 m2/g with a pore size of 9.38 nm. Fourier transform infrared spectra suggested that Sr2+ions entered the A sites and induced a decrease of the binding energy between Mn and O. The CO conversion with the La1‐xSrxMn0.8Fe0.2O3 (0≤x≤0.6) samples indicated that the La0.4Sr0.6Mn0.8Fe0.2O3 sample had the best catalytic activity and stability. Further analysis by X‐ray photoelectron spectroscopy demonstrated that Sr2+doping altered the content of Mn4+ions, oxygen vacancies and adsorbed oxygen species on the surface, which affected the catalytic performance for CO oxidation.
基金Hundred Scientists" Project of Ch inese Academy of Sciences.
文摘Aboveground vertical profiles of N2O concentrations were measured with in two natural coniferous-deciduous mixed forests of 1998 and 1999 in Changbai M ountain. Significant high N2O concentrations were found in six profiles out of t welve profiles. The results showed that high concentrations were 3.03% to 64.9% higher than the "normal concentrations" in these six profiles. Differences betwe en the high concentrations and the "normal concentrations" were statistically si gnificant. The simultaneous occurrence of high concentrations at/nearby the cano py height and normal concentrations at the trunk space height indicated an efflu x of N2O from foliage to atmosphere. This study afforded evidence supporting tha t plant per se, besides forest soil, was an important source of atmospheric N2O in a forest ecosystem.
基金Supported by New Century Program for Excellent Talents of Ministry of Education of China(NCET-07-0251)Talents Foundation of Anhui Province(08040106803)~~
文摘[Objective] The research aimed at cloning and analyzing mitochondrial cytochrome oxidase I gene(cox 1)of C.suppressalis.[Method] The mitochondrial cox 1 gene of C.suppressalis was cloned with PCR method and sequenced.Then,cox1 sequences of other 21 Lepidopteran species were obtained by blasting the GenBank with cox 1 gene sequence of C.suppressalis.Finally,homology comparison and molecular phylogenitic analysis among the 22 Lepidopteran species were conducted.[Result] The open reading frame of cox 1 gene from C.suppressalis contained 1 531 nucleotides encoding a putative protein of 510 amino acids.The cox1 gene used a start codon CGA,and an incomplete termination codon composed of only T.Based on the amino acid sequences of cox 1,the molecular phylogenetic tree of Lepidoptera was reconstructed using the maximum likelihood(ML)method.The molecular phylogenetic tree was similar to the morphological phylogenetic tree mainly,but also showed some differences.[Conclusion] The result will provide reference for further research on expression and application of cox 1 gene.
文摘Catalysis effect of triphenyl bismuth (TPB) on kinetics of hydroxyl terminated polybutadiene-toluene diisocyanate (HTPB-TDI) curing reaction was studied by non-isothermal differential scanning calorimetry (DSC). The characteristic temperature of curing system was measured for calculating kinetic parameters and establishing curing reaction kinetic equations. The results show that activation energy (Ea) of uncatalyzed HTPB-TDI curing system is 51.29 kJmol-1, and TPB decreases Ea to 46.43 kJ'mol-1. Catalyst lowers reaction temperature and shortens curing time through decreasing ac- tivation energy of curing reaction and accelerating reaction rate. TPB can increase the reaction rate at 27 ℃ to the value of uncatalyzed system at 80 ℃. The catalytic activity reaches the maximum when concentration is 0.5 %.
文摘This work presents the visible-light photocatalytic selective oxidation of thiols to disulfides with molecular oxygen(O2) on anatase TiO2. The high specific surface area of anatase TiO2 proved to be especially critical in conferring high photocatalytic activity. Herein, surface complexation between thiol and TiO2 gives rise to photocatalytic activity under irradiation with 520 nm green light-emitting diodes(LEDs), resulting in excellent reaction activity, substrate scope, and functional group tolerance. The transformation was extremely efficient for the selective oxidation of various thiols, particularly with substrates bearing electron-withdrawing groups(reaction times of less than 10 min). To date, the longest wavelength of visible light that this system can utilize is 520 nm by the surface complex of substrate-TiO2. Importantly, O2 was found to act as the electron and proton acceptor, rather than to incorporate into the substrates. Our findings regarding this surface complex-based photocatalytic system can allow one to understand the interaction between the conduction band electrons and O2.
基金the National Natural Science Foundation(20076051)the Special Fund for Major State Basic Research Project(G1999022101)the Research Fund for the Doctoral Program of Higher Education(98029016)
文摘Shenfu coal was extracted with 0S2, n-hexane, benzene sequentially. The extracts were analyzed with GC/MS. It is presented that group seperation of soluble organic compounds in the coal can be achieved by fractionated extraction using different solvents. Main components in CS2 soluble fraction from Shenfu coal are alkyl-substituted arenes. Aliphatic hydrocarbons are overwhelmingly predominant in n-hexane-soluble fraction. Dito tricyclic aramatic hydrocarbons are identified in benzene-soluble fraction. The molecular structures detection of 2, 4, 6-trichlorobenzenamine and 3, 3', 4, 4', 5, 5'-hexachloro-1, 1'- biphenyl and 2-chlorocyclohexanol firstly provide information for existence form of chlorine in coal.
基金This work was supported by the Natural Science Foundation of Changzhou Institute of Technology (No.YN1507), Undergraduate Training Program for Innovation of Changzhou Institute of Technology (No.J150245), the China Postdoctoral Science Foundation (No.2013M531506), the National Natural Science Foundation of China (No.21273212).
文摘We report on the photodissociation dynamics of CO2^+ via its A2Пu,1/2 state using the scheme of [1+1] photon excitation that is intermediated by the mode-selected A2Hu,1/2(Vl,V2,0) vibronic states. Photodissociation fragment exciation spectrum and images of photofragment CO+ have been measured to obtain reaction dynamics parameters such as the available energy and the average translational energy. Combining with the potential energy functions of CO2^+, the dissociation mechanism of CO2^+ is discussed. The conformational variation of CO2^+ from linear to bent on the photodissociation dynamics of CO2^+ is verified.
文摘In this work, supramolecular fixation of three amines, including aniline, ethylenediamine, and diethylamine, using cobalt tetraphenylporphyrin (CoTPP) for SO2 removal was studied using UV-Vis and fluorescence measurements. The UV-Vis spectra showed that increasing amines concentrations resulted in bathochromic shift for CoTPP Soret absorption band (B band). Once SO2 was introduced, it competed with CoTPP for aniline, ethylenediamine, and diethylamine, which eventually led to the release of CoTPP and the change of solution colour/absorption band. After that, the CoTPP was regenerated and got back to the first state. The fluorescence spectra offered that CoTPP interacted with aniline, ethylenediamine, and diethylamine to form 1:1 molecular adducts. The interactions of CoTPP with aniline, ethylenediamine, and diethylamine were entropy-driven. The interaction of CoTPP with aniline and diethylamine was endothermic, and that with ethylenediamine was exothermic. Ethylenediamine presented a stronger binding constant value for CoTPP, so it was considered as a potential agent for SO2 removal.
基金Supported by the National High Technology Research and Development Program of China (2008AA03Z3472294,2009AA302410)the Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme (2010)+1 种基金the Guangdong Province Sci & Tech Bureau (2006B12401006, 2008A080800024)the Chinese Universities Basic Research Founding
文摘The 0.4 nm molecular sieve supported Cu-Ni bimetal catalysts for direct synthesis of dimethyl carbonate (DMC) from CO 2 and CH 3 OH were prepared and investigated. The synthesized catalysts were fully characterized by BET, XRD (X-ray diffraction), TPR (temperature programmed reduction), IR (infra-red adsorption), NH 3-TPD (temperature programmed desorption) and CO 2-TPD (temperature programmed desorption) techniques. The results showed that the surface area of catalysts decreased with increasing metal content, and the metals as well as Cu-Ni alloy co-existed on the reduced catalyst surface. There existed interaction between metal and carrier, and moreover, metal particles affected obviously the acidity and basicity of carrier. The large amount of basic sites facilitated the activation of methanol to methoxyl species and their subsequent reaction with activated carbon dioxide. The catalysts were evaluated in a continuous tubular fixed-bed micro-gaseous reactor and the catalyst with bimetal loading of 20% (by mass) had best catalytic activities. Under the conditions of 393 K, 1.1 MPa, 5 h and gas space velocity of 510 h 1 , the selectivity and yield of DMC were higher than 86.0 % and 5.0 %, respectively.
文摘Objective: To detect the action of arsenic trioxide (As_2O_3) on theexpression of Tumor drug-resistant molecule. Methods: APL cell line MR_2 resistant to all-transretin-oic acid (ATRA ) was put into research, while APL cell line NB_4 was used for control. Theim-munocytochemical assays were used to detect the expressions of P-glycoprotein (P_(gp)) andGluta-thione S-transferase ( GST) . Results: Not only the expression of P_(gp) in MR_2 cell line(30%-40%) was significantly higher than that in NB4 cell line (10%-20% ) (P < 0.001), but also theexpression of GST in MR_2 cell line (60. 4 +- 4.0 )-( 66.5 +- 4.4) was significantly higher thanthat in NB4 cell line (28.3 +- 5.6)-(31.2 +- 5. l)(P < 0.05). As_2O_3 at the concentration of0.5-2.0 μmol/l could significantly decrease the expression of P_(gp) and GSTπ, but could donothing about the expression of GSTα and GSTμ. Conclusion: The lower expression of P_(gp) andGSTπ might be the sensitive indications of frustrating drug-resistance, while GSTα and GSTμ mightnot be the case. ATRA might be the substrates of P_(gp) transmission and GSTπ catalysis .
文摘Solar‐driven conversion of carbon dioxide,water and nitrogen into high value‐added fuels(e.g.H_(2),CO,CH_(4),CH_(3)OH,NH_(3) and so on)is regarded as an environmental‐friendly and ideal route for relieving the greenhouse gas effect and countering energy crisis,which is an attractive and challenging topic.Hence,various types of photocatalysts have been developed successively to meet the requirements of these photocatalysis.Among them,cobalt‐based heterogeneous catalysts emerge as one of the most promising photocatalysts that open up alluring vistas in the field of solar‐to‐fuels conversion,which can effectively enhance photocatalytic efficiency by extending light absorption range,promoting charge separation,providing active sites,and lowering reaction barrier.In this review,we first present the working principles of cobalt‐based heterogeneous catalysts for photocatalytic water splitting,CO_(2) reduction,and N_(2) fixation.Second,five efficient strategies including surface modification,morphology modulation,crystallinity controlling,crystal engineering and doping,are discussed for improving the photocatalytic performance with different types cobalt‐based catalysts(cobalt nanoparticles and single atom,oxides,sulfides,phosphides,MOFs,COFs,LDHs,carbide,and nitrides).Third,we outline the applications for the state‐of‐the‐art photocatalytic CO_(2) reduction and water splitting,and nitrogen fixation over cobalt‐based heterogeneous catalysts.Finally,the central challenges and possible improvements of cobalt‐based photocatalysis in the future are presented.The purpose of this review is to summarize the past experience and lessons,and provide reference for the further development of cobalt‐based photocatalysis technology.