二分图受约束最小点覆盖问题作为一个NP-完全问题,无法在多项式时间内得到最优解,除非P=NP。基于此,本文提出了一种基于链暗示技术的二分图受约束最小点覆盖问题的近似算法,具体为:当二分图受约束最小点覆盖问题实例中存在满足约束条件...二分图受约束最小点覆盖问题作为一个NP-完全问题,无法在多项式时间内得到最优解,除非P=NP。基于此,本文提出了一种基于链暗示技术的二分图受约束最小点覆盖问题的近似算法,具体为:当二分图受约束最小点覆盖问题实例中存在满足约束条件的最小点覆盖(ku,kl)时,对任意给定的近似率δ=1+ε>1,一定可以找到一个受约束近似点覆盖(ku,kl),对应的近似率为max{ku/ku,kl/kl}≤1+ε,整个近似算法的运行时间复杂度为O(22/ε)。显然,它是二分图受约束最小点覆盖问题的一个多项式时间近似方案(polynomial time approximation scheme,PTAS算法)。展开更多
文摘二分图受约束最小点覆盖问题作为一个NP-完全问题,无法在多项式时间内得到最优解,除非P=NP。基于此,本文提出了一种基于链暗示技术的二分图受约束最小点覆盖问题的近似算法,具体为:当二分图受约束最小点覆盖问题实例中存在满足约束条件的最小点覆盖(ku,kl)时,对任意给定的近似率δ=1+ε>1,一定可以找到一个受约束近似点覆盖(ku,kl),对应的近似率为max{ku/ku,kl/kl}≤1+ε,整个近似算法的运行时间复杂度为O(22/ε)。显然,它是二分图受约束最小点覆盖问题的一个多项式时间近似方案(polynomial time approximation scheme,PTAS算法)。