期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
二分类判别网络的对抗样本检测
1
作者
曾利宏
张巍
滕少华
《江西师范大学学报(自然科学版)》
CAS
北大核心
2021年第3期285-291,共7页
在原始图像数据集中,添加特殊的细微扰动能形成对抗样本,经这类样本攻击的深度神经网络等模型可能以高置信度给出错误输出,然而当前大部分检测对抗样本的方法有许多前提条件,限制了其检测能力.针对这一问题,该文提出一个二分类判别网络...
在原始图像数据集中,添加特殊的细微扰动能形成对抗样本,经这类样本攻击的深度神经网络等模型可能以高置信度给出错误输出,然而当前大部分检测对抗样本的方法有许多前提条件,限制了其检测能力.针对这一问题,该文提出一个二分类判别网络模型,通过多层卷积神经网络来提取样本数据的主要特征;应用特殊的判别目标函数,结合不同程度的噪声数据来训练并优化网络模型,以提高模型检测对抗样本的能力;模型采用端到端的方式,可直接部署到目标模型的源样本中来检测对抗样本的存在,亦可进行大规模应用.实验结果表明:该模型的检测率优于其他相关模型.
展开更多
关键词
二分类判别网络
深度神经
网络
对抗样本
检测
下载PDF
职称材料
题名
二分类判别网络的对抗样本检测
1
作者
曾利宏
张巍
滕少华
机构
广东工业大学计算机学院
出处
《江西师范大学学报(自然科学版)》
CAS
北大核心
2021年第3期285-291,共7页
基金
广东省重点领域研发计划(2020B010166006)
国家自然科学基金(61972102)
+1 种基金
广东省教育厅课题(粤教高[2018]179号,粤教高函[2018]1号)
广州市科技计划(201903010107,201802030011,201802010026,201802010042,201604046017)资助项目.
文摘
在原始图像数据集中,添加特殊的细微扰动能形成对抗样本,经这类样本攻击的深度神经网络等模型可能以高置信度给出错误输出,然而当前大部分检测对抗样本的方法有许多前提条件,限制了其检测能力.针对这一问题,该文提出一个二分类判别网络模型,通过多层卷积神经网络来提取样本数据的主要特征;应用特殊的判别目标函数,结合不同程度的噪声数据来训练并优化网络模型,以提高模型检测对抗样本的能力;模型采用端到端的方式,可直接部署到目标模型的源样本中来检测对抗样本的存在,亦可进行大规模应用.实验结果表明:该模型的检测率优于其他相关模型.
关键词
二分类判别网络
深度神经
网络
对抗样本
检测
Keywords
binary discrimination network
deep neural network
adversarial samples
detection
分类号
TP311 [自动化与计算机技术—计算机软件与理论]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
二分类判别网络的对抗样本检测
曾利宏
张巍
滕少华
《江西师范大学学报(自然科学版)》
CAS
北大核心
2021
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部