期刊文献+
共找到275篇文章
< 1 2 14 >
每页显示 20 50 100
基于满二叉树的二分K-means聚类并行推荐算法 被引量:9
1
作者 陈平华 陈传瑜 《计算机工程与科学》 CSCD 北大核心 2015年第8期1450-1457,共8页
在推荐系统中应用K-means算法聚类可有效降维,然而聚类效果往往依赖于选定的初始中心,并且一旦选定目标簇后,推荐过程只针对目标簇进行,与其他簇无关。针对上述两个问题,提出一种基于满二叉树的二分K-means聚类并行推荐算法。该算法首... 在推荐系统中应用K-means算法聚类可有效降维,然而聚类效果往往依赖于选定的初始中心,并且一旦选定目标簇后,推荐过程只针对目标簇进行,与其他簇无关。针对上述两个问题,提出一种基于满二叉树的二分K-means聚类并行推荐算法。该算法首先反复迭代二分K-means算法,迭代过程中使用簇内凝聚度作为分裂阈值,形成一颗满二叉树;然后通过层次遍历将用户归入到K个叶子节点(簇);最后针对K个簇,应用MapReduce框架进行并行推荐预测。MovieLens上的实验结果表明,该算法可大幅度提高推荐系统准确性,同时增强系统可扩展性。 展开更多
关键词 满二叉树 kmeans 推荐算法 MAPREDUCE
下载PDF
K-means算法初始聚类中心选择的优化 被引量:50
2
作者 冯波 郝文宁 +1 位作者 陈刚 占栋辉 《计算机工程与应用》 CSCD 2013年第14期182-185,192,共5页
针对传统K-means算法对初始聚类中心敏感的问题,提出了基于数据样本分布情况的动态选取初始聚类中心的改进K-means算法。该算法根据数据点的距离构造最小生成树,并对最小生成树进行剪枝得到K个初始数据集合,得到初始的聚类中心。由此得... 针对传统K-means算法对初始聚类中心敏感的问题,提出了基于数据样本分布情况的动态选取初始聚类中心的改进K-means算法。该算法根据数据点的距离构造最小生成树,并对最小生成树进行剪枝得到K个初始数据集合,得到初始的聚类中心。由此得到的初始聚类中心非常地接近迭代聚类算法收敛的聚类中心。理论分析与实验表明,改进的K-means算法能改善算法的聚类性能,减少聚类的迭代次数,提高效率,并能得到稳定的聚类结果,取得较高的分类准确率。 展开更多
关键词 kmeans算法 初始中心 TDkM算法
下载PDF
基于最优划分的K-Means初始聚类中心选取算法 被引量:62
3
作者 张健沛 杨悦 +1 位作者 杨静 张泽宝 《系统仿真学报》 CAS CSCD 北大核心 2009年第9期2586-2590,共5页
针对传统K-Means算法聚类过程中,聚类数目k值难以准确预设和随机选取初始聚类中心造成聚类精度及效率降低等问题,提出一种基于最优划分的K-Means初始聚类中心选取算法,该算法利用直方图方法将数据样本空间进行最优划分,依据数据样本自... 针对传统K-Means算法聚类过程中,聚类数目k值难以准确预设和随机选取初始聚类中心造成聚类精度及效率降低等问题,提出一种基于最优划分的K-Means初始聚类中心选取算法,该算法利用直方图方法将数据样本空间进行最优划分,依据数据样本自身分布特点确定K-Means算法的初始聚类中心,无需预设k值,减少了算法结果对参数的依赖,提高算法运算效率及准确率。实验结果表明,利用该算法改进的K-Means算法,运算时间明显减少,其聚类结果准确率以及算法效率均得到显著提高。 展开更多
关键词 kmeans算法 初始中心 直方图 最优划分方法
下载PDF
初始中心优化的K-Means聚类算法 被引量:47
4
作者 李飞 薛彬 黄亚楼 《计算机科学》 CSCD 北大核心 2002年第7期94-96,共3页
1.引言 聚类分析(clustering)是人工智能研究的重要领域.聚类方法被广泛研究并应用于机器学习、统计分析、模式识别以及数据库数据挖掘与知识发现等不同的领域.
关键词 遗传算法 随机全局优化搜索算法 kmeans算法 初始中心 优化
下载PDF
基于改进K-means聚类的在线新闻评论主题抽取 被引量:15
5
作者 夏火松 李保国 杨培 《情报学报》 CSSCI 北大核心 2016年第1期55-65,共11页
新闻评论反映民众对新闻事件的观点,抽取评论主题,对用户、企业、政府都具有很高的情报分析价值。基于K-means聚类的主题挖掘算法应用到新闻评论中时,在欧氏距离下,如果使用最大距离法选初始点则会聚成一大类。为解决这个问题,论文首先... 新闻评论反映民众对新闻事件的观点,抽取评论主题,对用户、企业、政府都具有很高的情报分析价值。基于K-means聚类的主题挖掘算法应用到新闻评论中时,在欧氏距离下,如果使用最大距离法选初始点则会聚成一大类。为解决这个问题,论文首先在预处理阶段增加同义词替换和自动构建领域词典的部分,改善了数据稀疏性和高维性。其次,提出了K-means改进算法,用隐藏长评论-最大距离法选初始点,解决了初始点多为离群点的问题,用方差拐点确定K值,解决了预先设定聚类个数的问题,实验发现了先用BW权重选初始点,再用新提出的BW-DF权重聚类的效果最好。最后,将改进算法与原算法的聚类效果比较,实验结果表明,改进算法准确率高,抽取新闻评论主题的效果明显。 展开更多
关键词 在线新闻评论 kmeans改进 主题抽取 同义词替换 分词领域词典
下载PDF
模糊K-Harmonic Means聚类算法 被引量:6
6
作者 赵恒 杨万海 张高煜 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2005年第4期603-606,638,共5页
对K-HarmonicMeans算法进行扩展,考虑到数据点对不同类的隶属关系,将模糊的概念应用到聚类中,提出了模糊K-HarmonicMeans算法,推导出聚类中心和模糊隶属度的迭代公式.在中心迭代聚类算法统一框架的基础上,推导出FKHM算法聚类中心的条件... 对K-HarmonicMeans算法进行扩展,考虑到数据点对不同类的隶属关系,将模糊的概念应用到聚类中,提出了模糊K-HarmonicMeans算法,推导出聚类中心和模糊隶属度的迭代公式.在中心迭代聚类算法统一框架的基础上,推导出FKHM算法聚类中心的条件概率表达式以及在迭代过程中的数据加权函数表达式.最后,用Folkes&Mallows指标对聚类结果进行评价.实验表明,模糊K-HarmonicMeans(KHM)算法在聚类对于初值不敏感的同时提高了聚类结果的精确度,达到较好的聚类效果. 展开更多
关键词 模糊k—Harmonic means 中心 条件概率 Folkes & Mallows指标
下载PDF
基于初始聚类中心优化和维间加权的改进K-means算法 被引量:7
7
作者 王越 王泉 +1 位作者 吕奇峰 曾晶 《重庆理工大学学报(自然科学)》 CAS 2013年第4期77-80,共4页
针对K-means算法易受随机选择的初始聚类中心的影响和划分准确率不高的缺点,给出了一种改进的K-means算法。首先对初始聚类中心的选择过程进行了改进,然后对各样本点间差异最大的维进行加权处理。在Iris数据集上对原始算法和改进后的K-m... 针对K-means算法易受随机选择的初始聚类中心的影响和划分准确率不高的缺点,给出了一种改进的K-means算法。首先对初始聚类中心的选择过程进行了改进,然后对各样本点间差异最大的维进行加权处理。在Iris数据集上对原始算法和改进后的K-means算法的聚类结果进行对比分析。实验证明:改进后的算法稳定,且聚类的准确率达到了92%。 展开更多
关键词 kmeans算法 初始中心 维间加权 Iris数据集
下载PDF
一种优化初始中心的K-means聚类算法 被引量:22
8
作者 邓海 覃华 孙欣 《计算机技术与发展》 2013年第11期42-45,共4页
针对传统K-means聚类算法对初始聚类中心的敏感性和随机性,造成容易陷入局部最优解和聚类结果波动性大的问题,结合密度法和最大化最小距离的思想,提出基于最近高密度点间的垂直中心点优化初始聚类中心的K-means聚类算法。该算法选取相... 针对传统K-means聚类算法对初始聚类中心的敏感性和随机性,造成容易陷入局部最优解和聚类结果波动性大的问题,结合密度法和最大化最小距离的思想,提出基于最近高密度点间的垂直中心点优化初始聚类中心的K-means聚类算法。该算法选取相互间距离最大的K对高密度点,并以这K对高密度点的均值作为聚类的初始中心,再进行Kmeans聚类。实验结果表明,该算法有效排除样本中含有的孤立点,并且聚类过程收敛速度快,聚类结果有更好的准确性和稳定性。 展开更多
关键词 kmeans 中心 高密度点 垂直中心点
下载PDF
K-means聚类算法的研究 被引量:46
9
作者 韩晓红 胡彧 《太原理工大学学报》 CAS 北大核心 2009年第3期236-239,共4页
为解决原始K-means算法随机选取初始聚类中心对聚类结果的影响较大的不足,提出了改进算法。采取基于采样选取聚类中心距离的规则,进行多次选择决定最终的初始聚类中心,使得改进后的算法受初始聚类中心选择的影响达到最小;同时,在选取初... 为解决原始K-means算法随机选取初始聚类中心对聚类结果的影响较大的不足,提出了改进算法。采取基于采样选取聚类中心距离的规则,进行多次选择决定最终的初始聚类中心,使得改进后的算法受初始聚类中心选择的影响达到最小;同时,在选取初始聚类中心后,对初值进行数据标准化处理。将改进的K-means算法应用于销售行业,结果显示,改进后的算法比原始的算法在效率上得到了提高。 展开更多
关键词 数据挖掘 kmeans算法 初始中心 分析
下载PDF
基于初始中心优化的遗传K-means聚类新算法 被引量:17
10
作者 孙秀娟 刘希玉 《计算机工程与应用》 CSCD 北大核心 2008年第23期166-168,182,共4页
一个好的K-means聚类算法至少要满足两个要求:(1)能反映聚类的有效性,即所分类别数要与实际问题相符;(2)具有处理噪声数据的能力。传统的K-means算法是一种局部搜索算法,存在着对初始化敏感和容易陷入局部极值的缺点。针对此缺点,提出... 一个好的K-means聚类算法至少要满足两个要求:(1)能反映聚类的有效性,即所分类别数要与实际问题相符;(2)具有处理噪声数据的能力。传统的K-means算法是一种局部搜索算法,存在着对初始化敏感和容易陷入局部极值的缺点。针对此缺点,提出了一种优化初始中心的K-means算法,该算法选择相距最远的处于高密度区域的k个数据对象作为初始聚类中心。实验表明该算法不仅具有对初始数据的弱依赖性,而且具有收敛快,聚类质量高的特点。为体现聚类的有效性,获得更高精度的聚类结果,提出了将优化的K-means算法(PKM)和遗传算法相结合的混合算法(PGKM),该算法在提高紧凑度(类内距)和分离度(类间距)的同时自动搜索最佳聚类数k,对k个初始中心优化后再聚类,不断地循环迭代,得到满足终止条件的最优聚类。实验证明该算法具有更好的聚类质量和综合性能。 展开更多
关键词 kmeans算法 遗传算法
下载PDF
K-means聚类与SVDD结合的新的分类算法 被引量:7
11
作者 刘艳红 薛安荣 史习云 《计算机应用研究》 CSCD 北大核心 2010年第3期883-886,共4页
为了提高支持向量数据描述(SVDD)的分类精度,引入局部疏密度提出了改进的SVDD算法。该算法提高了分类精度,但增加了计算复杂度。为此,先用K-means聚类将整个数据集划分为k个簇,再用改进的SVDD算法并行训练k个簇,最后再对获得的k个局部... 为了提高支持向量数据描述(SVDD)的分类精度,引入局部疏密度提出了改进的SVDD算法。该算法提高了分类精度,但增加了计算复杂度。为此,先用K-means聚类将整个数据集划分为k个簇,再用改进的SVDD算法并行训练k个簇,最后再对获得的k个局部支持向量集训练,即得到最终的全局决策边界。由于采用了分而治之并行计算的方法,提高了算法的效率。对合成数据(200个)和实际数据的实验结果表明,所提算法较SVDD算法,训练时间降低为原来的10%,分类错误率较原来的降低了近一半。因此,所提算法提高了分类精度和算法效率。 展开更多
关键词 单值分 支持向量数据描述 kmeans 局部疏密度
下载PDF
一种改进的K-means聚类彩色图像分割方法 被引量:18
12
作者 刘小丹 牛少敏 《湘潭大学自然科学学报》 CAS CSCD 北大核心 2012年第2期90-93,共4页
图像分割是从图像处理到图像分析的关键步骤.图像分割的目的是将图像分割为多个互不重叠且又各具特性的区域,主要应用于图像压缩、目标提取、模式识别等.以往的图像分割技术主要应用于灰度图像,随着计算机技术的进步,彩色图像分割逐渐... 图像分割是从图像处理到图像分析的关键步骤.图像分割的目的是将图像分割为多个互不重叠且又各具特性的区域,主要应用于图像压缩、目标提取、模式识别等.以往的图像分割技术主要应用于灰度图像,随着计算机技术的进步,彩色图像分割逐渐受到关注.该文在前人对彩色图像分割问题的大量研究成果基础上,提出了一种将K-means聚类、蚁群算法以及分水岭算法相结合的分割方法.本方法有效的克服了聚类数目必须依据先验知识提前设定、最初的聚类中心是随机选取的、聚类的效果好坏依赖于距离判定公式的缺陷. 展开更多
关键词 kmeans 彩色图像分割 蚁群算法 分水岭算法
下载PDF
一种K-means聚类算法的改进与应用 被引量:20
13
作者 张杰 卓灵 朱韵攸 《电子技术应用》 北大核心 2015年第1期125-128,131,共5页
K-means算法是基于距离作为相似性度量的聚类算法,传统的K-means算法存在难以确定中心值个数、受噪声及孤立点影响较大的缺点。对此,利用类间相异度与类内相异度改进初始值K,以尽量减少人工干预;同时计算数据库中每一点与剩余点的距离... K-means算法是基于距离作为相似性度量的聚类算法,传统的K-means算法存在难以确定中心值个数、受噪声及孤立点影响较大的缺点。对此,利用类间相异度与类内相异度改进初始值K,以尽量减少人工干预;同时计算数据库中每一点与剩余点的距离和距离均和,将两者的大小比较作为识别孤立点和噪声点的依据,从而删除孤立点,减少对数据聚类划分的影响。最后将改进后的Kmeans算法应用于入侵检测系统并进行仿真实验,结果表明,基于改进的K-means算法的入侵检测系统一定程度上降低了误报率及误检率,提高了检测的准确率。 展开更多
关键词 数据挖掘 算法 kmeans 入侵检测
下载PDF
基于MapReduce的K-means聚类集成 被引量:8
14
作者 冀素琴 石洪波 《计算机工程》 CAS CSCD 2013年第9期84-87,共4页
针对传统聚类算法难以高效进行海量数据聚类分析的问题,提出一种基于MapReduce框架的K-means聚类集成算法。利用K-means算法生成不同聚簇数目的基聚类结果,改进共协关系矩阵,依据数据点对出现次数进行集成,自动得出最终聚类结果。实验... 针对传统聚类算法难以高效进行海量数据聚类分析的问题,提出一种基于MapReduce框架的K-means聚类集成算法。利用K-means算法生成不同聚簇数目的基聚类结果,改进共协关系矩阵,依据数据点对出现次数进行集成,自动得出最终聚类结果。实验结果表明,该算法能够有效地改善聚类质量,具有良好的扩展性,适用于海量数据的聚类分析。 展开更多
关键词 海量数据 MAPREDUCE框架 kmeans算法 共协关系矩阵 集成
下载PDF
基于形状相似距离的K-means聚类算法 被引量:8
15
作者 苑津莎 李中 《华北电力大学学报(自然科学版)》 CAS 北大核心 2009年第6期98-103,共6页
把向量作为空间中的物体展开相似度的评估,分析了向量间各维差值与形状差异的间的近似关系,提出了基于形状相似距离的K-means算法。在三个UCI(University of California,Irvine)标准数据集上的聚类结果表明,对于有关形状信息的数据,基... 把向量作为空间中的物体展开相似度的评估,分析了向量间各维差值与形状差异的间的近似关系,提出了基于形状相似距离的K-means算法。在三个UCI(University of California,Irvine)标准数据集上的聚类结果表明,对于有关形状信息的数据,基于形状相似距离的K-means算法比采用传统距离的K-means算法,聚类准确度显著提高。 展开更多
关键词 kmeans算法 相似度 距离 形状
下载PDF
一种基于改进K-means的文档聚类算法的实现研究 被引量:8
16
作者 岑咏华 王晓蓉 吉雍慧 《现代图书情报技术》 CSSCI 北大核心 2008年第12期73-79,共7页
在对文档聚类的含义、作用和一般过程的阐述基础上,分析一种基于"最小最大"原则初始质心优选的改进K-means聚类的基本思想,并重点设计相关的聚类算法,实现聚类系统,基于系统对300篇学术文档及其相关特征词语进行聚类实验。实... 在对文档聚类的含义、作用和一般过程的阐述基础上,分析一种基于"最小最大"原则初始质心优选的改进K-means聚类的基本思想,并重点设计相关的聚类算法,实现聚类系统,基于系统对300篇学术文档及其相关特征词语进行聚类实验。实验结果表明,本文所设计和实现的改进K-means的聚类算法表现出较好的性能。 展开更多
关键词 文档 kmeans
下载PDF
可间断运行的K-means聚类算法 被引量:3
17
作者 黄志华 温步瀛 王国乾 《计算机应用研究》 CSCD 北大核心 2009年第6期2053-2055,2069,共4页
引入事务的恢复机制改进K-means算法,改进后的算法允许在运行过程中的任何时刻停机,重新启动后可在停机前运算成果的基础上继续运算,直至算法结束。改进后的算法使得普通机器条件下针对大数据集运用K-means算法成为可能。改进后的算法... 引入事务的恢复机制改进K-means算法,改进后的算法允许在运行过程中的任何时刻停机,重新启动后可在停机前运算成果的基础上继续运算,直至算法结束。改进后的算法使得普通机器条件下针对大数据集运用K-means算法成为可能。改进后的算法在长达400 h的聚类运算中得到了检验。 展开更多
关键词 kmeans算法 恢复机制
下载PDF
一种基于改进PSO的K-means优化聚类算法 被引量:27
18
作者 谢秀华 李陶深 《计算机技术与发展》 2014年第2期34-38,共5页
针对传统的K-means算法对初始聚类中心的选取敏感、容易收敛到局部最优的缺点,提出一种基于改进粒子群优化算法(PSO)的K-means优化聚类算法。该算法利用PSO算法强大的全局搜索能力对初始聚类中心的选取进行优化:通过动态调整惯性权重等... 针对传统的K-means算法对初始聚类中心的选取敏感、容易收敛到局部最优的缺点,提出一种基于改进粒子群优化算法(PSO)的K-means优化聚类算法。该算法利用PSO算法强大的全局搜索能力对初始聚类中心的选取进行优化:通过动态调整惯性权重等参数增强PSO算法的性能;利用群体适应度方差决定算法中前部分PSO算法和后部分Kmeans算法的转换时机;设置变量实时监控各个粒子和粒子群的最优值变化情况,及时地对出现早熟收敛的粒子进行变异操作,从而为K-means算法搜索到全局最优的初始聚类中心,使聚类结果不受初始聚类中心影响,易于获得全局最优解。实验结果表明文中提出的改进算法与传统聚类算法相比具有更高的聚类正确率、更好的聚类质量及全局搜索能力。 展开更多
关键词 kmeans算法 粒子群优化算法 全局最优
下载PDF
基于改进K-means聚类和量子粒子群算法的多航迹规划 被引量:5
19
作者 董阳 王瑾 柏鹏 《电讯技术》 北大核心 2014年第9期1249-1253,共5页
针对在复杂环境下需要通过多航迹规划以实现武器协同的问题,利用排挤机制产生Kmeans聚类的初始聚类中心,并将改进K-means聚类与量子粒子群算法(QPSO)相结合应用于无人机的三维多航迹规划。改进算法解决了K-means聚类易陷入局部最优、聚... 针对在复杂环境下需要通过多航迹规划以实现武器协同的问题,利用排挤机制产生Kmeans聚类的初始聚类中心,并将改进K-means聚类与量子粒子群算法(QPSO)相结合应用于无人机的三维多航迹规划。改进算法解决了K-means聚类易陷入局部最优、聚类准确率低的问题。根据产生的初始聚类中心,将粒子划分成多个子种群,利用QPSO算法对每个子种群进行优化,使得每个子种群可以产生一条可行航迹。仿真分析证明了改进算法可以有效保证子种群之间的多样性,生成较为分散的多条可行航迹。 展开更多
关键词 无人机 多航迹规划 排挤机制 量子粒子群优化 kmeans
下载PDF
一种改进的K-means蚁群聚类算法 被引量:11
20
作者 李振 贾瑞玉 《计算机技术与发展》 2015年第12期28-31,共4页
现有的K-means蚁群聚类算法,首先进行K-means聚类算法操作,快速、粗略地确定初始聚类中心,接着根据上一步获得的聚类中心再进行蚁群算法聚类操作,有效地解决蚁群聚类算法收敛速度过慢的问题。研究发现,现有的Kmeans蚁群聚类算法并没有... 现有的K-means蚁群聚类算法,首先进行K-means聚类算法操作,快速、粗略地确定初始聚类中心,接着根据上一步获得的聚类中心再进行蚁群算法聚类操作,有效地解决蚁群聚类算法收敛速度过慢的问题。研究发现,现有的Kmeans蚁群聚类算法并没有改善算法在迭代后期易出现收敛于非全局最优的缺陷。针对这一问题,提出一种改进的Kmeans蚁群聚类算法。每次迭代结束时,随机选择一个或多个簇,再从选中的簇里选择含有信息素最小的节点进行变异操作,把选中的节点变异到其他簇,计算评价值判断变异是否进行。仿真实验结果表明,用F值表示的平均值和最差结果都比原有的算法较好,有效解决了原有算法易收敛于非全局最优及早熟问题,但由于变异操作使算法运行时间相对较长。 展开更多
关键词 kmeans算法 蚁群算法 组合 变异
下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部