Heterogeneous TiCl4/MgCl_(2) type Ziegler-Natta(Z-N)catalysts with unique advantages like low cost,high activity,high stereoregularity and pretty particle morphology,contribute to more than 130 Mt polyolefin large-sca...Heterogeneous TiCl4/MgCl_(2) type Ziegler-Natta(Z-N)catalysts with unique advantages like low cost,high activity,high stereoregularity and pretty particle morphology,contribute to more than 130 Mt polyolefin large-scale production.However,most researches related with heterogeneous Z-N catalysts focused onα-olefin polymerizations like ethylene,propylene,etc.展开更多
Four kinds of Cu-based composites with different mass ratios of graphite and WS2 as lubricants were fabricated by hot-pressing method. Electrical sliding wear behaviors of the composites were investigated using a bloc...Four kinds of Cu-based composites with different mass ratios of graphite and WS2 as lubricants were fabricated by hot-pressing method. Electrical sliding wear behaviors of the composites were investigated using a block-on-ring tribometer rubbing against Cu-5%Ag alloy ring. The results demonstrated that 800 ~C was the optimum sintering temperature for Cu-graphite-WS2 dual-lubricant composites to obtain the best comprehensive properties of mechanical strength and lubrication performance. Contact voltage drops of the Cu-based composites increased with increasing the mass ratio of WS2 to graphite. The Cu-based composite with 20% graphite and 10% WS2 showed the best wear resistance due to the excellent synergetic lubricating effect of graphite and WS2. The reasonable addition of WS2 into the Cu-graphite composite can remarkably improve the wear resistance without much rise of electrical energy loss which provides a novel principle of designing suitable sliding electrical contact materials for industrial applications.展开更多
Sulfate adsorption by poly(m-phenylenediamine)s(PmPDs) with various oxidation states synthesized through chemically oxidative polymerization was investigated.Series of sorption experiments were conducted,and the a...Sulfate adsorption by poly(m-phenylenediamine)s(PmPDs) with various oxidation states synthesized through chemically oxidative polymerization was investigated.Series of sorption experiments were conducted,and the adsorption mechanism and the relationship between oxidation state and adsorption performance were studied with the characterization of Fourier transform infrared spectroscopy(FTIR),X-ray photoelectron spectroscopy(XPS),pH tracking and energy calculation.The results show that the adsorption performance in acidic solution is improved with the decrease of oxidation state of poly(m-phenylenediamine)(PmPD).The rate constant is as high as 425.5 mg/(g·min) in the short equilibrium time of 30 min.The estimated highest adsorptivity of sulfate ions is 95.1%.According to the Langmuir equation,the adsorbance is 108.5 mg/g.The sulfate desorption efficiency is about 95% and the accumulative adsorbance is up to 487.95 mg/g in 5 cycles.展开更多
Wrought magnesium alloy sheets were butt welded with gas metal arc welding process. Pores in the weld were investigated under different welding parameters, the causes of pore formation were systematically disposed, an...Wrought magnesium alloy sheets were butt welded with gas metal arc welding process. Pores in the weld were investigated under different welding parameters, the causes of pore formation were systematically disposed, and the effects of porosity on the microstructure and mechanical properties of the joint were analyzed. The microstructure examination shows that the pores mainly appear close to the top or bottom part of the weld, and could connect to each other and lead to the formation of cracks in the welds. However, the pores can be controlled with proper welding parameters. The tensile testing results reveal that the average joint strength is close to or higher than that of the base metal. The microhardness in the weld can be even higher than that in the base metal due to the second ohase strengthening of β-Mg17(A1, Zn)12 formed in the weld.展开更多
The process-oriented model Forest-DNDC describing biogeochemical cycling of C and N and GHGs (greenhouse gases) fluxes (CO2, NO and N2O) in forest ecosystems was applied to simulate carbon sequestration and GHGs e...The process-oriented model Forest-DNDC describing biogeochemical cycling of C and N and GHGs (greenhouse gases) fluxes (CO2, NO and N2O) in forest ecosystems was applied to simulate carbon sequestration and GHGs emissions in Abies fabric forest of the Gongga Mountains at southeastern edge of the Tibetan Plateau. The results indicated that the simulated gross primary production (GPP) of Abies fabric forest was strongly affected by temperature. The annual total GPP was 24,245.3 kg C ha^-1 yr^-1 for 2005 and 26,318.8 kg C ha^-1 yr^-1 for 2006, respectively. The annual total net primary production (NPP) was 5,935.5 and 4,882.2 kg C ha^-1 yr^-1 for 2005 and 2006, and the annual total net ecosystem production (NEP) was 4,815.4 and 3,512.8 kg C ha^-1 yr^-1 for 2005 and 2006, respectively. The simulated seasonal variation in CO2 emissions generally followed the seasonal variations in temperature and precipitation. The annual total CO2 emissions were 3,109.0 and 4,821.0 kg C ha^-1 yr^-1 for 2005 and 2006, the simulated annual total N2O emissions from forest soil were 1.47 and 1.36 kg N ha^-1 yr^-1 for 2005 and 2006, and the annual total NO emissions were 0.09 and o.12 kg N ha^-1 yr^-1 for 2005 and 2006, respectively.展开更多
A novel catalyst for CO2 electroreduction based on nanostructured SnO2 was synthesized using a facile hydrothermal self-assembly method. The electrochemical activity showed that the catalyst gave outstanding catalytic...A novel catalyst for CO2 electroreduction based on nanostructured SnO2 was synthesized using a facile hydrothermal self-assembly method. The electrochemical activity showed that the catalyst gave outstanding catalytic activity and selectivity in CO2 electroreduction. The catalytic activity and formate selectivity depended strongly on the electrolyte conditions. A high faradaic efficiency, i.e., 56%, was achieved for formate formation in KHCO3 (0.5 mol/L). This is attributed to control of formate production by mass and charge transfer processes. Electrolysis experiments using SnO2-50/GDE (an SnOz-based gas-diffusion electrode, where 50 indicates the 50% ethanol content of the electrolyte) as the catalyst, showed that the electrolyte pH also affected CO2 reduction. The optimum electrolyte pH for obtaining a high faradaic efficiency for formate production was 8.3. This is mainly because a neutral or mildly alkaline environment maintains the oxide stability. The fara- daic efficiency for formate production declined with time. X-ray photoelectron spectroscopy showed that this is the result of deposition of trace amounts of fluoride ions on the SnO2-50/GDE surface, which hinders reduction of CO2 to formate.展开更多
After exposure of one-year old seedlings of Swietenia macrophylla to an overnight temperature (13 C, 19 C, 25 C, 31 C or 35 C), the leaf net photosynthetic rate (Pn) was researched through measuring photosynthetic lig...After exposure of one-year old seedlings of Swietenia macrophylla to an overnight temperature (13 C, 19 C, 25 C, 31 C or 35 C), the leaf net photosynthetic rate (Pn) was researched through measuring photosynthetic light-response curves at 360 mmolmol-1 CO2, and photosynthetic CO2-response curves at light-saturated intensity (1500 mmolm-2 s-1). The optimal temperature for photosynthesis measured at 360 mmol穖ol-1 CO2 was from 25 C to 31 C, but which was from 31C to 35 C at saturating CO2 concentration. At temperature of below 25 C, the decline in Pn was mainly due to the drop in carboxylation efficiency (Ce), while as temperature was over 31 C, the reduction in Pn resulted from both decrease in Ce and increase in leaf respiration. The CO2-induced stimulation of photosynthesis was strongly inhibited at temperatures below 13 C. The results showed that, the leaf photosynthesis of tropical evergreen plants should not be accelerated at low temperature in winter season with elevated CO2 concentration in the future.展开更多
Absorption rate of CO2 into aqueous solution of N-methyldiethanolamine (MDEA) blended with diethanolamine (DEA) and piperazine (PZ) was studied and a kinetic model was established. It is shown that homogeneous activat...Absorption rate of CO2 into aqueous solution of N-methyldiethanolamine (MDEA) blended with diethanolamine (DEA) and piperazine (PZ) was studied and a kinetic model was established. It is shown that homogeneous activation mechanism could explain this absorption process. The absorption rate coefficients of carbon dioxide into MDEA aqueous solution blended with DEA, PZ or DEA+PZ were compared with each other. The results demonstrated that the different activation effect of DEA, PZ and DEA+PZ on the carbon dioxide absorption comes from the difference in CO2 combination rate, transport of PZ and DEA to MDEA and the regeneration rate of PZ and DEA.展开更多
The influence of main characteristics upon conversion directions of the lignite organic part during its oxidation desulphurization was studied. The optimum temperature values, the ratio oxidant : raw material, and ti...The influence of main characteristics upon conversion directions of the lignite organic part during its oxidation desulphurization was studied. The optimum temperature values, the ratio oxidant : raw material, and time of coal stay in the reaction zone, which provide the maximum degree of sulphur conversion and hydrogen sulphide content in desulphur- ization gases, were calculated. The process implemented under these conditions will decrease environment pollution by sulphur dioxide during further lignite burning at least to 55 %-60 % and utilize sulphur in coal in the form of desul- phurization gases with hydrogen sulphide content of 7 %. Such obtaining sulphur. The effect of the above three factors on the depth was studied. gases can be reprocessed by the known methods of and character of the coal organic matter transformation展开更多
Based on the China high resolution emission gridded data (I km spatial resolution), this article is aimed to create a Chinese city carbon dioxide (CO2) emission data set using consolidated data sources as well as ...Based on the China high resolution emission gridded data (I km spatial resolution), this article is aimed to create a Chinese city carbon dioxide (CO2) emission data set using consolidated data sources as well as normalized and standardized data processing methods. Standard methods were used to calculate city CO2 emissions, including scope I and scope 2. Cities with higher CO2 emissions are mostly in north, northeast, and eastern coastal areas. Cities with lower CO2 emissions are in the western region. Cites with higher CO2 emissions are clustered in the Jing-Jin-Ji Region (such as Beijing, Tianjin, and Tangshan), and the Yangtze River Delta region (such as Shanghai and Suzhou). The city per capita CO2 emission is larger in the north than the south. There are obvious aggregations of cities with high per capita CO2 emission in the north. Four cities among the top 10 per capita emissions (Erdos, Wuhai, Shizuishan, and Yinchuan) cluster in the main coal production areas of northern China. This indicates the significant impact of coal resources endowment on city industry and CO2 emissions. The majority (77%) of cities have annual CO2 emissions below 50 million tons. The mean annual emission, among all cities, is 37 million tons. Emissions from service-based cities, which include the smallest number of cities, are the highest. Industrial cities are the largest category and the emission distribution from these cities is close to the normal distribution. Emissions and degree of dispersion, in the other cities (excluding industrial cities and service-based cities), are in the lowest level. Per capita CO2 emissions in these cities are generally below 20 t/person (89%) with a mean value of 11 t/person. The distribution interval of per capita CO2 emission within industrial cities is the largest among the three city categories. This indicates greater differences among per capita CO2 emissions of industrial cities. The distribution interval of per capita CO2 emission of other cities is the lowest, indicating smaller differences of per capita CO2 emissions among this city category. Three policy suggestions are proposed: first, city CO2 emission inventory data in China should be increased, especially for prefecture level cities. Second, city responsibility for emission reduction, and partition- ing the national goal should be established, using a bottom-up approach based on specific CO2 emission levels and potential for emission reductions in each city. Third, comparative and bench- marking research on city CO2 emissions should be conducted, and a Top Runner system of city CO2 emission reduction should be established.展开更多
Ti+(CO2)2Ar and Ti+(CO2)n (n=3-7) complexes are produced by laser vaporization in a pulsed supersonic expansion. The ion complexes of interest are each mass-selected in a time- of-flight spectrometer, and stud...Ti+(CO2)2Ar and Ti+(CO2)n (n=3-7) complexes are produced by laser vaporization in a pulsed supersonic expansion. The ion complexes of interest are each mass-selected in a time- of-flight spectrometer, and studied with infrared photodissociation spectroscopy. For each complex, a sharp band in the CO stretching frequency region is observed, which confirms the formation of the OTi+CO(CO2)~_l oxide-carbonyl species. Small OTi+CO(CO2)~_1 complexes (n_〈5) exhibit CO stretching and antisymmetric CO2 stretching vibrational bands that are blue-shifted from those of free CO and CO2. The experimental observations indicate that the coordination number of CO and CO2 molecules around TiO+ is five. Evidence is also observed for the presence of another electrostatic bonding Ti+(CO2)2 structural isomer for the Ti+(CO2)2Ar complex, which is characterized to have a bent OCO-Ti+-OCO structure stabilized by argon coordination.展开更多
The multiple linear regression equations for adsorption ratio of CO2/CH4 and its coal quality indexes were built with SPSS software on basis of existing coal quality data and its adsorption amount of CO2 and OH4. The ...The multiple linear regression equations for adsorption ratio of CO2/CH4 and its coal quality indexes were built with SPSS software on basis of existing coal quality data and its adsorption amount of CO2 and OH4. The regression equations built were tested with data collected from some s, and the influences of coal quality indexes on adsorption ratio of CO2/CH4 were studied with investigation of regression equations. The study results show that the regression equation for adsorption ratio of CO2/CH4 and volatile matter, ash and moisture in coal can be obtained with multiple linear regression analysis, that the influence of same coal quality index with the degree of metamorphosis or influence of coal quality indexes for same coal rank on adsorption ratio is not consistent.展开更多
The effects of the molding pressure of a KO2 oxygen plate and the initial concentration of CO2 on the oxygen generation rate, the oxygen generation efficiency, and the carbon dioxide absorption rate were studied using...The effects of the molding pressure of a KO2 oxygen plate and the initial concentration of CO2 on the oxygen generation rate, the oxygen generation efficiency, and the carbon dioxide absorption rate were studied using a YES-300 hydraulic press to alter the pressure when forming the oxygen plate used in a coal mine refuge chamber. In addition, changes in the initial concentration of CO2 used in the closed- box model were made by adjusting the CO2 supply system, and a CD-7 multi-function parameter instrument was employed to monitor and record the changes of O2 and CO2 concentration in the closed-box model. Results indicate that the oxygen generation rate of KO2 oxygen plates, the oxygen generation efficiency, and the carbon dioxide absorption rate decrease when there is an increase in the pressure used to mold the oxygen plates, but those values increase when the initial CO2 concentration increases. When the initial concentration of CO2 in the dosed-box model is 3.5% and the forming pressure is 10 kN, the average oxygen generation rate of 15 g KO2 oxygen plate is 11.88 ×10^-3 L/min, the oxygen generation efficiency is 80.3%, and the average CO2 absorption rate is 11.0 × 10^-3 L/min. Compared with the condition where the initial CO2 concentration is 1.5%, the results show that average oxygen genera- tion rate of oxygen plates increases by 88,9%, the oxygen generation efficiency increases by 88.9%, and the CO2 absorption rate increases by 100%.展开更多
Rock weathering plays an important role in studying the long-term carbon cycles and global climatic change. According to the statistics analysis, the Huanghe (Yellow) River water chemistry was mainly controlled by eva...Rock weathering plays an important role in studying the long-term carbon cycles and global climatic change. According to the statistics analysis, the Huanghe (Yellow) River water chemistry was mainly controlled by evaporite and carbonate weathering, which were responsible for over 90% of total dissolved ions. As compared with the Huanghe River basin, dissolved load of the Changjiang (Yangtze) River was mainly originated from the carbonate dissolution. The chemical weathering rates were estimated to be 39.29t/(km(2).a) and 61.58t/(km(2).a) by deducting the HCO3- derived from atmosphere in the Huanghe River and Changjiang River watersheds, respectively. The CO2 consumption rates by rock weathering were calculated to be 120.84 x 10(3)mol/km(2) and 452.46 x 10(3)mol/km(2) annually in the two basins, respectively. The total CO2 consumption of the two basins amounted to 918.51 x 10(9)mol/a, accounting for 3.83% of the world gross. In contrast to other world watersheds, the stronger evaporite reaction and infirm silicate weathering can explain such feature that CO2 consumption rates were lower than a global average, suggesting that the sequential weathering may be go on in the two Chinese drainage basins.展开更多
The correct method used in forest soil respiration measurement by Li-6400 is a premise of data quality control. According to the study in a larch plantation, collars should be inserted at 12 hours in advance to effici...The correct method used in forest soil respiration measurement by Li-6400 is a premise of data quality control. According to the study in a larch plantation, collars should be inserted at 12 hours in advance to efficiently reduce the influence of CO2 spring-out.Moreover, collar insertion depth substantially affected soil respiration measurement, i.e. when collar was shallowly inserted into soil,transversal gas diffusion and the CO2 re-spring-out caused by unstable collars in the measurement could lead to overestimating soil respiration rate; however, when collar was deeply inserted into soil, root respiration decline caused by root-cut and the most active respiratory of the surface soil separated by the inserted collars could lead to underestimating soil respiration rate. Furthermore, an error less than 5% could be guaranteed in typical sunny day if the target [CO2] was set to the mean value of ambient [CO2] in most time of the day, but it should be carefully set in early morning and late afternoon according to changing ambient [CO2]. This protocol of measurement is useful in real measurement.展开更多
The volatilization of stibnite(Sb2S3) in nitrogen from 700 to 1000 °C was investigated by using thermogravimetric analysis. The results indicate that in inert atmosphere, stibnite can be volatilized most efficien...The volatilization of stibnite(Sb2S3) in nitrogen from 700 to 1000 °C was investigated by using thermogravimetric analysis. The results indicate that in inert atmosphere, stibnite can be volatilized most efficiently as Sb2S3(g) at a linear rate below850 °C, with activation energy of 137.18 k J/mol, and the reaction rate constant can be expressed as k=206901exp(-16.5/T). Stibnite can be decomposed into Sb and sulfur at temperature above 850 °C in a nitrogen atmosphere. However, in the presence of oxygen,stibnite is oxidized into Sb and SO2 gas at high temperature. Otherwise, Sb is oxidized quickly into antimony oxides such as Sb2O3 and Sb O2, while Sb2O3 can be volatilized efficiently at high temperature.展开更多
基金Supported by National Key Research and Development Program of China(2022 YFB 3704700(2022 YFB 3704702))Major Scientific and Technological Innovation Project of Shandong Province(2021 CXGC 010901)Taishan Scholar Program。
文摘Heterogeneous TiCl4/MgCl_(2) type Ziegler-Natta(Z-N)catalysts with unique advantages like low cost,high activity,high stereoregularity and pretty particle morphology,contribute to more than 130 Mt polyolefin large-scale production.However,most researches related with heterogeneous Z-N catalysts focused onα-olefin polymerizations like ethylene,propylene,etc.
基金Projects(9102601860979017) supported by the National Natural Science Foundation of ChinaProject(20110111110015) supported by the Doctoral Fund of Ministry of Education of China
文摘Four kinds of Cu-based composites with different mass ratios of graphite and WS2 as lubricants were fabricated by hot-pressing method. Electrical sliding wear behaviors of the composites were investigated using a block-on-ring tribometer rubbing against Cu-5%Ag alloy ring. The results demonstrated that 800 ~C was the optimum sintering temperature for Cu-graphite-WS2 dual-lubricant composites to obtain the best comprehensive properties of mechanical strength and lubrication performance. Contact voltage drops of the Cu-based composites increased with increasing the mass ratio of WS2 to graphite. The Cu-based composite with 20% graphite and 10% WS2 showed the best wear resistance due to the excellent synergetic lubricating effect of graphite and WS2. The reasonable addition of WS2 into the Cu-graphite composite can remarkably improve the wear resistance without much rise of electrical energy loss which provides a novel principle of designing suitable sliding electrical contact materials for industrial applications.
基金Project(50925417) supported by China National Funds for Distinguished Young ScientistsProject(50830301) supported by the National Natural Science Foundation of China+1 种基金Project(2009ZX07212-001-01) supported by Major Science and Technology Program for Water Pollution Control and Treatment of ChinaProject(2011) supported by Hunan Nonferrous Fundamental Research Fund
文摘Sulfate adsorption by poly(m-phenylenediamine)s(PmPDs) with various oxidation states synthesized through chemically oxidative polymerization was investigated.Series of sorption experiments were conducted,and the adsorption mechanism and the relationship between oxidation state and adsorption performance were studied with the characterization of Fourier transform infrared spectroscopy(FTIR),X-ray photoelectron spectroscopy(XPS),pH tracking and energy calculation.The results show that the adsorption performance in acidic solution is improved with the decrease of oxidation state of poly(m-phenylenediamine)(PmPD).The rate constant is as high as 425.5 mg/(g·min) in the short equilibrium time of 30 min.The estimated highest adsorptivity of sulfate ions is 95.1%.According to the Langmuir equation,the adsorbance is 108.5 mg/g.The sulfate desorption efficiency is about 95% and the accumulative adsorbance is up to 487.95 mg/g in 5 cycles.
基金Project (09009) supported by the State Key Laboratory of Advanced Welding and Joining,Harbin Institute of Technology,China
文摘Wrought magnesium alloy sheets were butt welded with gas metal arc welding process. Pores in the weld were investigated under different welding parameters, the causes of pore formation were systematically disposed, and the effects of porosity on the microstructure and mechanical properties of the joint were analyzed. The microstructure examination shows that the pores mainly appear close to the top or bottom part of the weld, and could connect to each other and lead to the formation of cracks in the welds. However, the pores can be controlled with proper welding parameters. The tensile testing results reveal that the average joint strength is close to or higher than that of the base metal. The microhardness in the weld can be even higher than that in the base metal due to the second ohase strengthening of β-Mg17(A1, Zn)12 formed in the weld.
基金the National Key Basic Research and Development Program of China (973 plan: 2003CB415201)
文摘The process-oriented model Forest-DNDC describing biogeochemical cycling of C and N and GHGs (greenhouse gases) fluxes (CO2, NO and N2O) in forest ecosystems was applied to simulate carbon sequestration and GHGs emissions in Abies fabric forest of the Gongga Mountains at southeastern edge of the Tibetan Plateau. The results indicated that the simulated gross primary production (GPP) of Abies fabric forest was strongly affected by temperature. The annual total GPP was 24,245.3 kg C ha^-1 yr^-1 for 2005 and 26,318.8 kg C ha^-1 yr^-1 for 2006, respectively. The annual total net primary production (NPP) was 5,935.5 and 4,882.2 kg C ha^-1 yr^-1 for 2005 and 2006, and the annual total net ecosystem production (NEP) was 4,815.4 and 3,512.8 kg C ha^-1 yr^-1 for 2005 and 2006, respectively. The simulated seasonal variation in CO2 emissions generally followed the seasonal variations in temperature and precipitation. The annual total CO2 emissions were 3,109.0 and 4,821.0 kg C ha^-1 yr^-1 for 2005 and 2006, the simulated annual total N2O emissions from forest soil were 1.47 and 1.36 kg N ha^-1 yr^-1 for 2005 and 2006, and the annual total NO emissions were 0.09 and o.12 kg N ha^-1 yr^-1 for 2005 and 2006, respectively.
基金supported by the Innovation Program of the Shanghai Municipal Education Commission(14ZZ074)the International Academic Coop-eration and Exchange Program of Shanghai Science and Technology Committee(14520721900)+1 种基金Graduate Innovation Fund of Donghua University(15D311304)the College of Environmental Science and Engineering,State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry,Donghua University.All the financial supports are gratefully acknowledged~~
文摘A novel catalyst for CO2 electroreduction based on nanostructured SnO2 was synthesized using a facile hydrothermal self-assembly method. The electrochemical activity showed that the catalyst gave outstanding catalytic activity and selectivity in CO2 electroreduction. The catalytic activity and formate selectivity depended strongly on the electrolyte conditions. A high faradaic efficiency, i.e., 56%, was achieved for formate formation in KHCO3 (0.5 mol/L). This is attributed to control of formate production by mass and charge transfer processes. Electrolysis experiments using SnO2-50/GDE (an SnOz-based gas-diffusion electrode, where 50 indicates the 50% ethanol content of the electrolyte) as the catalyst, showed that the electrolyte pH also affected CO2 reduction. The optimum electrolyte pH for obtaining a high faradaic efficiency for formate production was 8.3. This is mainly because a neutral or mildly alkaline environment maintains the oxide stability. The fara- daic efficiency for formate production declined with time. X-ray photoelectron spectroscopy showed that this is the result of deposition of trace amounts of fluoride ions on the SnO2-50/GDE surface, which hinders reduction of CO2 to formate.
文摘After exposure of one-year old seedlings of Swietenia macrophylla to an overnight temperature (13 C, 19 C, 25 C, 31 C or 35 C), the leaf net photosynthetic rate (Pn) was researched through measuring photosynthetic light-response curves at 360 mmolmol-1 CO2, and photosynthetic CO2-response curves at light-saturated intensity (1500 mmolm-2 s-1). The optimal temperature for photosynthesis measured at 360 mmol穖ol-1 CO2 was from 25 C to 31 C, but which was from 31C to 35 C at saturating CO2 concentration. At temperature of below 25 C, the decline in Pn was mainly due to the drop in carboxylation efficiency (Ce), while as temperature was over 31 C, the reduction in Pn resulted from both decrease in Ce and increase in leaf respiration. The CO2-induced stimulation of photosynthesis was strongly inhibited at temperatures below 13 C. The results showed that, the leaf photosynthesis of tropical evergreen plants should not be accelerated at low temperature in winter season with elevated CO2 concentration in the future.
文摘Absorption rate of CO2 into aqueous solution of N-methyldiethanolamine (MDEA) blended with diethanolamine (DEA) and piperazine (PZ) was studied and a kinetic model was established. It is shown that homogeneous activation mechanism could explain this absorption process. The absorption rate coefficients of carbon dioxide into MDEA aqueous solution blended with DEA, PZ or DEA+PZ were compared with each other. The results demonstrated that the different activation effect of DEA, PZ and DEA+PZ on the carbon dioxide absorption comes from the difference in CO2 combination rate, transport of PZ and DEA to MDEA and the regeneration rate of PZ and DEA.
文摘The influence of main characteristics upon conversion directions of the lignite organic part during its oxidation desulphurization was studied. The optimum temperature values, the ratio oxidant : raw material, and time of coal stay in the reaction zone, which provide the maximum degree of sulphur conversion and hydrogen sulphide content in desulphur- ization gases, were calculated. The process implemented under these conditions will decrease environment pollution by sulphur dioxide during further lignite burning at least to 55 %-60 % and utilize sulphur in coal in the form of desul- phurization gases with hydrogen sulphide content of 7 %. Such obtaining sulphur. The effect of the above three factors on the depth was studied. gases can be reprocessed by the known methods of and character of the coal organic matter transformation
基金funded by the project entitled"An Emission-Transport-Exposure Model Based Study on the Evaluation of the Environmental Impact of Carbon Market"[grant number:71673107]supported by the National Natural Science Foundation of China
文摘Based on the China high resolution emission gridded data (I km spatial resolution), this article is aimed to create a Chinese city carbon dioxide (CO2) emission data set using consolidated data sources as well as normalized and standardized data processing methods. Standard methods were used to calculate city CO2 emissions, including scope I and scope 2. Cities with higher CO2 emissions are mostly in north, northeast, and eastern coastal areas. Cities with lower CO2 emissions are in the western region. Cites with higher CO2 emissions are clustered in the Jing-Jin-Ji Region (such as Beijing, Tianjin, and Tangshan), and the Yangtze River Delta region (such as Shanghai and Suzhou). The city per capita CO2 emission is larger in the north than the south. There are obvious aggregations of cities with high per capita CO2 emission in the north. Four cities among the top 10 per capita emissions (Erdos, Wuhai, Shizuishan, and Yinchuan) cluster in the main coal production areas of northern China. This indicates the significant impact of coal resources endowment on city industry and CO2 emissions. The majority (77%) of cities have annual CO2 emissions below 50 million tons. The mean annual emission, among all cities, is 37 million tons. Emissions from service-based cities, which include the smallest number of cities, are the highest. Industrial cities are the largest category and the emission distribution from these cities is close to the normal distribution. Emissions and degree of dispersion, in the other cities (excluding industrial cities and service-based cities), are in the lowest level. Per capita CO2 emissions in these cities are generally below 20 t/person (89%) with a mean value of 11 t/person. The distribution interval of per capita CO2 emission within industrial cities is the largest among the three city categories. This indicates greater differences among per capita CO2 emissions of industrial cities. The distribution interval of per capita CO2 emission of other cities is the lowest, indicating smaller differences of per capita CO2 emissions among this city category. Three policy suggestions are proposed: first, city CO2 emission inventory data in China should be increased, especially for prefecture level cities. Second, city responsibility for emission reduction, and partition- ing the national goal should be established, using a bottom-up approach based on specific CO2 emission levels and potential for emission reductions in each city. Third, comparative and bench- marking research on city CO2 emissions should be conducted, and a Top Runner system of city CO2 emission reduction should be established.
文摘Ti+(CO2)2Ar and Ti+(CO2)n (n=3-7) complexes are produced by laser vaporization in a pulsed supersonic expansion. The ion complexes of interest are each mass-selected in a time- of-flight spectrometer, and studied with infrared photodissociation spectroscopy. For each complex, a sharp band in the CO stretching frequency region is observed, which confirms the formation of the OTi+CO(CO2)~_l oxide-carbonyl species. Small OTi+CO(CO2)~_1 complexes (n_〈5) exhibit CO stretching and antisymmetric CO2 stretching vibrational bands that are blue-shifted from those of free CO and CO2. The experimental observations indicate that the coordination number of CO and CO2 molecules around TiO+ is five. Evidence is also observed for the presence of another electrostatic bonding Ti+(CO2)2 structural isomer for the Ti+(CO2)2Ar complex, which is characterized to have a bent OCO-Ti+-OCO structure stabilized by argon coordination.
文摘The multiple linear regression equations for adsorption ratio of CO2/CH4 and its coal quality indexes were built with SPSS software on basis of existing coal quality data and its adsorption amount of CO2 and OH4. The regression equations built were tested with data collected from some s, and the influences of coal quality indexes on adsorption ratio of CO2/CH4 were studied with investigation of regression equations. The study results show that the regression equation for adsorption ratio of CO2/CH4 and volatile matter, ash and moisture in coal can be obtained with multiple linear regression analysis, that the influence of same coal quality index with the degree of metamorphosis or influence of coal quality indexes for same coal rank on adsorption ratio is not consistent.
基金financially supported by the Research Fund for the Doctoral Program of Higher Education of China (No. 20130006120020)the China Postdoctoral Science Foundation (No. 2013M540866)+1 种基金the China Postdoctoral Science Foundation (No. 2014T70039)the Fundamental Research Funds for the Central Universities (No. FRF-TP-14-083A2)
文摘The effects of the molding pressure of a KO2 oxygen plate and the initial concentration of CO2 on the oxygen generation rate, the oxygen generation efficiency, and the carbon dioxide absorption rate were studied using a YES-300 hydraulic press to alter the pressure when forming the oxygen plate used in a coal mine refuge chamber. In addition, changes in the initial concentration of CO2 used in the closed- box model were made by adjusting the CO2 supply system, and a CD-7 multi-function parameter instrument was employed to monitor and record the changes of O2 and CO2 concentration in the closed-box model. Results indicate that the oxygen generation rate of KO2 oxygen plates, the oxygen generation efficiency, and the carbon dioxide absorption rate decrease when there is an increase in the pressure used to mold the oxygen plates, but those values increase when the initial CO2 concentration increases. When the initial concentration of CO2 in the dosed-box model is 3.5% and the forming pressure is 10 kN, the average oxygen generation rate of 15 g KO2 oxygen plate is 11.88 ×10^-3 L/min, the oxygen generation efficiency is 80.3%, and the average CO2 absorption rate is 11.0 × 10^-3 L/min. Compared with the condition where the initial CO2 concentration is 1.5%, the results show that average oxygen genera- tion rate of oxygen plates increases by 88,9%, the oxygen generation efficiency increases by 88.9%, and the CO2 absorption rate increases by 100%.
基金Undertheauspicesof Ministry of Science and Technology Project of China (No. G1999043075)
文摘Rock weathering plays an important role in studying the long-term carbon cycles and global climatic change. According to the statistics analysis, the Huanghe (Yellow) River water chemistry was mainly controlled by evaporite and carbonate weathering, which were responsible for over 90% of total dissolved ions. As compared with the Huanghe River basin, dissolved load of the Changjiang (Yangtze) River was mainly originated from the carbonate dissolution. The chemical weathering rates were estimated to be 39.29t/(km(2).a) and 61.58t/(km(2).a) by deducting the HCO3- derived from atmosphere in the Huanghe River and Changjiang River watersheds, respectively. The CO2 consumption rates by rock weathering were calculated to be 120.84 x 10(3)mol/km(2) and 452.46 x 10(3)mol/km(2) annually in the two basins, respectively. The total CO2 consumption of the two basins amounted to 918.51 x 10(9)mol/a, accounting for 3.83% of the world gross. In contrast to other world watersheds, the stronger evaporite reaction and infirm silicate weathering can explain such feature that CO2 consumption rates were lower than a global average, suggesting that the sequential weathering may be go on in the two Chinese drainage basins.
基金National Natural Science Foundation of China (30300271),Program of Key Basic Research from Ministry of Science and Technology (2004CCA02700) and Sina-Japan cooperation project on larch forest study.
文摘The correct method used in forest soil respiration measurement by Li-6400 is a premise of data quality control. According to the study in a larch plantation, collars should be inserted at 12 hours in advance to efficiently reduce the influence of CO2 spring-out.Moreover, collar insertion depth substantially affected soil respiration measurement, i.e. when collar was shallowly inserted into soil,transversal gas diffusion and the CO2 re-spring-out caused by unstable collars in the measurement could lead to overestimating soil respiration rate; however, when collar was deeply inserted into soil, root respiration decline caused by root-cut and the most active respiratory of the surface soil separated by the inserted collars could lead to underestimating soil respiration rate. Furthermore, an error less than 5% could be guaranteed in typical sunny day if the target [CO2] was set to the mean value of ambient [CO2] in most time of the day, but it should be carefully set in early morning and late afternoon according to changing ambient [CO2]. This protocol of measurement is useful in real measurement.
基金Project(51204210) supported by the National Natural Science Foundation of ChinaProject(2011AA061001) supported by the National High Technology Research and Development Program of ChinaProject(2012BAC12B04) supported by the National Science&Technology Pillar Program during Twelfth Five-Year Plan of China
文摘The volatilization of stibnite(Sb2S3) in nitrogen from 700 to 1000 °C was investigated by using thermogravimetric analysis. The results indicate that in inert atmosphere, stibnite can be volatilized most efficiently as Sb2S3(g) at a linear rate below850 °C, with activation energy of 137.18 k J/mol, and the reaction rate constant can be expressed as k=206901exp(-16.5/T). Stibnite can be decomposed into Sb and sulfur at temperature above 850 °C in a nitrogen atmosphere. However, in the presence of oxygen,stibnite is oxidized into Sb and SO2 gas at high temperature. Otherwise, Sb is oxidized quickly into antimony oxides such as Sb2O3 and Sb O2, while Sb2O3 can be volatilized efficiently at high temperature.