The multiple linear regression equations for adsorption ratio of CO2/CH4 and its coal quality indexes were built with SPSS software on basis of existing coal quality data and its adsorption amount of CO2 and OH4. The ...The multiple linear regression equations for adsorption ratio of CO2/CH4 and its coal quality indexes were built with SPSS software on basis of existing coal quality data and its adsorption amount of CO2 and OH4. The regression equations built were tested with data collected from some s, and the influences of coal quality indexes on adsorption ratio of CO2/CH4 were studied with investigation of regression equations. The study results show that the regression equation for adsorption ratio of CO2/CH4 and volatile matter, ash and moisture in coal can be obtained with multiple linear regression analysis, that the influence of same coal quality index with the degree of metamorphosis or influence of coal quality indexes for same coal rank on adsorption ratio is not consistent.展开更多
In this study, we provided more theoretical method for estimation of dissolution amount and applied this method to enhanced coalbed methane recovery (ECBMR) simulator. Dissolution amount was measured by method of di...In this study, we provided more theoretical method for estimation of dissolution amount and applied this method to enhanced coalbed methane recovery (ECBMR) simulator. Dissolution amount was measured by method of differential heat of adsorption. Akabira coal, a Japanese bituminous coal, was used for the experiment. The results showed that CO2 was stored in coal by both adsorption and dissolution. Using this result the methane production was calculated by ECBMR-simulator, enhanced coalbed methane recovery simulator, the University of Tokyo (ECOMERS-UT). Total stored CO2 was separated into adsorption component and dissolution component. Only the former component contributes to the competitive adsorption. Coalbed methane (CBM) production simulation considering the dissolution showed later and smaller peak production and prolonged methane production before the breakthrough than the conventional competitive adsorption.展开更多
According to the special requirements of secondary mining of resources in gateway-and-pillar goal in extra-thick seams of Shanxi, this paper presents a technical proposal of back stoping from level floors. Numerical s...According to the special requirements of secondary mining of resources in gateway-and-pillar goal in extra-thick seams of Shanxi, this paper presents a technical proposal of back stoping from level floors. Numerical simulation and theoretical analysis are ccsed to investigate the compaction characteristics of cavities under stress as well as an appropriate mining height of the primary-mining layer based on dif- ferent mining widths and pillar widths. For Yangjian coal mine, the mining thickness of the first seam during back stoping from level floor is determined to be 3 m, which meets the relevant requirements. Gateway-and-pillar goaf of a single layer has a range of influence of 9 m vertically. If gateway-and-pillar goaf occurs both in 9-1 and 9-5 layers, the range is extended to within 11.2 m. When the mining width of a gateway is less than 2 m or larger than 5 m, the gateway-and-pillar goal in the upper layer of the primary-mining seam can be filled in and compacted after stoping. When the working face is 2 m away from the gateway and pillar before entering into it and after passing through it, the coal body under the gateway and pillar is subjected to relatively high stress. During mining of the upper layer, moreover, the working face should interlock the goaf in primary-mining layer for 20 m.展开更多
A theoretical basis for the optimization of carbon dioxide injection parameters and the development of the drainage system can be provided by identifying the permeability change characteristic of coal and rock after i...A theoretical basis for the optimization of carbon dioxide injection parameters and the development of the drainage system can be provided by identifying the permeability change characteristic of coal and rock after injection of carbon dioxide into the coal seam. Sihe, Yuwu, and Changcun mines were used as research sites. Scanning electron microscopy and permeability instruments were used to measure coal properties such as permeability and surface structure of the coal samples at different pH values of carbon dioxide solution and over different timescales. The results show that the reaction between minerals in coal and carbonate solution exhibit positive and negative aspects of permeability-the dissolution reaction between carbonate minerals in coal and acid solution improves the conductivity of coal whilst, on the other hand, the clay minerals in the coal (mainly including montmorillonite, illite and kaolinite) exhibit expansion as a result of ion exchange with the H~ in acid solution, which has a negative effect on the per- meability of the coal. The permeability of coal samples increased at first and then decreased with immer- sion time, and when the soaking time is 2-3 months the permeability of the coal reached a maximum. In general, for coals with permeabilities less than 0.2 mD or greater than 2 roD, the effect on the permeabil- ity is low: when the permeability of the coal is in the range 0.2-2 mD, the effect on the permeability is highest. Research into permeability change characteristics can provide a theoretical basis for carbon diox- ide injection under different reservoir permeability conditions and subsequent drainage.展开更多
We investigated the photocatalytic degradation of dye wastewater by using titanium dioxide (TiO2) coated on a coal cinder. The coal cinder was used as the carrier, with a thin film of TiO2 coated on it by using the ...We investigated the photocatalytic degradation of dye wastewater by using titanium dioxide (TiO2) coated on a coal cinder. The coal cinder was used as the carrier, with a thin film of TiO2 coated on it by using the sol-gel method. Using the Congo red as the model pollutant for dye wastewater, we studied the decolorization efficiency, and effects of TiO2 film thickness and roasting temperature on the efficiency. We also evaluated the recycling and regeneration of the immobilized TiO2 (TiO2/cinder). Results show that the decolorization rate of Congo red solution was more than 98% after 2.h treatment when we used TiO2/cinder calcined at 500 ℃ for 2 h and coated four times as the photocatalyst. At the same time, the TiO2/cinder remained high catalytic activity after being reused and regenerated for many times.展开更多
Tight reservoirs are widely distributed, especially in coal measure strata. Identification of the densification mechanism of the tight sandstone reservoirs is critical in effectively exploring and exploiting tight gas...Tight reservoirs are widely distributed, especially in coal measure strata. Identification of the densification mechanism of the tight sandstone reservoirs is critical in effectively exploring and exploiting tight gasoil resources. In this study, the gas for mation from type III organic matter in coal was kinetically modeled for the whole diagenetic stage, from the shallow buried biogas generation stage to the deep buried thermal gas generation stage. The results demonstrated that during hydrocarbon formation, quantities of nonhydrocarbon gases, such as CO2, were generated. The proportion of CO2 is about 50%70% of that of the C15, which far exceeds the CO2 content (05%) in the natural gas in the sedimentary basins. Geological case study analysis showed that a considerable part of the "lost" gaseous CO2 was converted into carbonate cement under favorable envi ronments. Under the ideal conditions, the volume of the carbonate cement transformed from total CO2 generated by 1 m3 coal (Junggar Basin Jurassic, TOC 67%) can amount to 0.32 m3. Obviously, this process plays a very important role in the for mation of tight sandstone reservoirs in the coal measures. Our results also show that the kinetic generation processes of Ci5 and CO2 are asynchronous. There are two main stages of CO2 generation, one at the weak diagenetic stage and the other at the overmature stage, which are different from largescale multistage hydrocarbon gas generation. Therefore, we can understand the mechanism of tight gas charging by determining the filling time for a tight gas reservoir and the key period of CO2 genera tion. Further analysis and correlation studies of a specific region are of great significance for determining the mechanism and modeling gas charging in tight reservoirs. It should be noted that the formation of tight sandstone reservoirs is the combined result of complex organicinorganic and waterrockhydrocarbon interactions. The details of spatial and temporal distributions of the carbonate cement derived from the organic C02, which combines with metal ions (Ca/Mg/Fe) in the formation water, should be further investigated.展开更多
文摘The multiple linear regression equations for adsorption ratio of CO2/CH4 and its coal quality indexes were built with SPSS software on basis of existing coal quality data and its adsorption amount of CO2 and OH4. The regression equations built were tested with data collected from some s, and the influences of coal quality indexes on adsorption ratio of CO2/CH4 were studied with investigation of regression equations. The study results show that the regression equation for adsorption ratio of CO2/CH4 and volatile matter, ash and moisture in coal can be obtained with multiple linear regression analysis, that the influence of same coal quality index with the degree of metamorphosis or influence of coal quality indexes for same coal rank on adsorption ratio is not consistent.
文摘In this study, we provided more theoretical method for estimation of dissolution amount and applied this method to enhanced coalbed methane recovery (ECBMR) simulator. Dissolution amount was measured by method of differential heat of adsorption. Akabira coal, a Japanese bituminous coal, was used for the experiment. The results showed that CO2 was stored in coal by both adsorption and dissolution. Using this result the methane production was calculated by ECBMR-simulator, enhanced coalbed methane recovery simulator, the University of Tokyo (ECOMERS-UT). Total stored CO2 was separated into adsorption component and dissolution component. Only the former component contributes to the competitive adsorption. Coalbed methane (CBM) production simulation considering the dissolution showed later and smaller peak production and prolonged methane production before the breakthrough than the conventional competitive adsorption.
基金Financial support for this work was provided by the National High-Tech Research and Development Program of China (No. 2012AA062101)the Priority Academic Development Program of Jiangsu Higher Education Institutions (No. SZBF2011-6-B35)the Graduate Students Innovation Fund of Colleges and Universities in Jiangsu Province (No. CXZZ12_0950)
文摘According to the special requirements of secondary mining of resources in gateway-and-pillar goal in extra-thick seams of Shanxi, this paper presents a technical proposal of back stoping from level floors. Numerical simulation and theoretical analysis are ccsed to investigate the compaction characteristics of cavities under stress as well as an appropriate mining height of the primary-mining layer based on dif- ferent mining widths and pillar widths. For Yangjian coal mine, the mining thickness of the first seam during back stoping from level floor is determined to be 3 m, which meets the relevant requirements. Gateway-and-pillar goaf of a single layer has a range of influence of 9 m vertically. If gateway-and-pillar goaf occurs both in 9-1 and 9-5 layers, the range is extended to within 11.2 m. When the mining width of a gateway is less than 2 m or larger than 5 m, the gateway-and-pillar goal in the upper layer of the primary-mining seam can be filled in and compacted after stoping. When the working face is 2 m away from the gateway and pillar before entering into it and after passing through it, the coal body under the gateway and pillar is subjected to relatively high stress. During mining of the upper layer, moreover, the working face should interlock the goaf in primary-mining layer for 20 m.
基金the Major Projects of National Science and Technology Project‘‘Development of Coal-Bed Gas Dynamic Evaluation Model and Software System’’support under contract number 2011ZX05034-005 and 2011ZX05042-003Henan Polytechnic University Outstanding Youth Fund under contract number J2013-03
文摘A theoretical basis for the optimization of carbon dioxide injection parameters and the development of the drainage system can be provided by identifying the permeability change characteristic of coal and rock after injection of carbon dioxide into the coal seam. Sihe, Yuwu, and Changcun mines were used as research sites. Scanning electron microscopy and permeability instruments were used to measure coal properties such as permeability and surface structure of the coal samples at different pH values of carbon dioxide solution and over different timescales. The results show that the reaction between minerals in coal and carbonate solution exhibit positive and negative aspects of permeability-the dissolution reaction between carbonate minerals in coal and acid solution improves the conductivity of coal whilst, on the other hand, the clay minerals in the coal (mainly including montmorillonite, illite and kaolinite) exhibit expansion as a result of ion exchange with the H~ in acid solution, which has a negative effect on the per- meability of the coal. The permeability of coal samples increased at first and then decreased with immer- sion time, and when the soaking time is 2-3 months the permeability of the coal reached a maximum. In general, for coals with permeabilities less than 0.2 mD or greater than 2 roD, the effect on the permeabil- ity is low: when the permeability of the coal is in the range 0.2-2 mD, the effect on the permeability is highest. Research into permeability change characteristics can provide a theoretical basis for carbon diox- ide injection under different reservoir permeability conditions and subsequent drainage.
基金Funded by the Youth Fund Project of Yibin University (No. QJ05-28)
文摘We investigated the photocatalytic degradation of dye wastewater by using titanium dioxide (TiO2) coated on a coal cinder. The coal cinder was used as the carrier, with a thin film of TiO2 coated on it by using the sol-gel method. Using the Congo red as the model pollutant for dye wastewater, we studied the decolorization efficiency, and effects of TiO2 film thickness and roasting temperature on the efficiency. We also evaluated the recycling and regeneration of the immobilized TiO2 (TiO2/cinder). Results show that the decolorization rate of Congo red solution was more than 98% after 2.h treatment when we used TiO2/cinder calcined at 500 ℃ for 2 h and coated four times as the photocatalyst. At the same time, the TiO2/cinder remained high catalytic activity after being reused and regenerated for many times.
基金supported by National Natural Science Foundation of China (Grant No. 40873031)China Petroleum Foundation (Grant Nos. 2012Y-011, 2011B-0601)National Oil and Gas Special Foundation (Grant No. 2011ZX05007-001)
文摘Tight reservoirs are widely distributed, especially in coal measure strata. Identification of the densification mechanism of the tight sandstone reservoirs is critical in effectively exploring and exploiting tight gasoil resources. In this study, the gas for mation from type III organic matter in coal was kinetically modeled for the whole diagenetic stage, from the shallow buried biogas generation stage to the deep buried thermal gas generation stage. The results demonstrated that during hydrocarbon formation, quantities of nonhydrocarbon gases, such as CO2, were generated. The proportion of CO2 is about 50%70% of that of the C15, which far exceeds the CO2 content (05%) in the natural gas in the sedimentary basins. Geological case study analysis showed that a considerable part of the "lost" gaseous CO2 was converted into carbonate cement under favorable envi ronments. Under the ideal conditions, the volume of the carbonate cement transformed from total CO2 generated by 1 m3 coal (Junggar Basin Jurassic, TOC 67%) can amount to 0.32 m3. Obviously, this process plays a very important role in the for mation of tight sandstone reservoirs in the coal measures. Our results also show that the kinetic generation processes of Ci5 and CO2 are asynchronous. There are two main stages of CO2 generation, one at the weak diagenetic stage and the other at the overmature stage, which are different from largescale multistage hydrocarbon gas generation. Therefore, we can understand the mechanism of tight gas charging by determining the filling time for a tight gas reservoir and the key period of CO2 genera tion. Further analysis and correlation studies of a specific region are of great significance for determining the mechanism and modeling gas charging in tight reservoirs. It should be noted that the formation of tight sandstone reservoirs is the combined result of complex organicinorganic and waterrockhydrocarbon interactions. The details of spatial and temporal distributions of the carbonate cement derived from the organic C02, which combines with metal ions (Ca/Mg/Fe) in the formation water, should be further investigated.