A novel edge-triggered D-flip-flop based on a resonant tunneling diode (RTD) is proposed and used to construct a binary frequency divider. The design is discussed in detail and the performance of the circuit is veri...A novel edge-triggered D-flip-flop based on a resonant tunneling diode (RTD) is proposed and used to construct a binary frequency divider. The design is discussed in detail and the performance of the circuit is verified using SPICE. Relying on the nonlinear characteristics of RTD,we reduced the number of components used in our DFF circuit to only half of that required using conventional CMOS SCFL technology.展开更多
In this paper,indium doped SnO2 nanorods and nanowires have been prepared by the molten salt method,and the effects of indium doping concentration on the morphology and electrical properties of one-dimensional(1D) SnO...In this paper,indium doped SnO2 nanorods and nanowires have been prepared by the molten salt method,and the effects of indium doping concentration on the morphology and electrical properties of one-dimensional(1D) SnO2 nanostructures have been studied.It is found that indium doping concentration can affect the epitaxial growth,morphology and the electrical conductance of 1D SnO2 nanostructures.It is also found that the element made by using 6 mol% indium doped SnO2 nanorods responds to nitrogen gas.展开更多
文摘A novel edge-triggered D-flip-flop based on a resonant tunneling diode (RTD) is proposed and used to construct a binary frequency divider. The design is discussed in detail and the performance of the circuit is verified using SPICE. Relying on the nonlinear characteristics of RTD,we reduced the number of components used in our DFF circuit to only half of that required using conventional CMOS SCFL technology.
基金support from the Scientific Research Foundation for Young Talents of Fuzhou University (Grant No. 0041826483)Research Foundation for the Doctor of Guangdong Pharmaceutical University(Grant No. 2007YKX15)Research Foundation for the Excellent Yong Teacher of Guangdong Pharmaceutical University
文摘In this paper,indium doped SnO2 nanorods and nanowires have been prepared by the molten salt method,and the effects of indium doping concentration on the morphology and electrical properties of one-dimensional(1D) SnO2 nanostructures have been studied.It is found that indium doping concentration can affect the epitaxial growth,morphology and the electrical conductance of 1D SnO2 nanostructures.It is also found that the element made by using 6 mol% indium doped SnO2 nanorods responds to nitrogen gas.