二次函数性质:若二次函数 f(x)=ax<sup>2</sup>+bx+c(a】0) 1、若存在一x<sub>0</sub>,使f(x<sub>0</sub>)≤0,则f(x)的图象与x轴必有交点,即△=b<sup>2</sup>-4ac≥0。 2、若...二次函数性质:若二次函数 f(x)=ax<sup>2</sup>+bx+c(a】0) 1、若存在一x<sub>0</sub>,使f(x<sub>0</sub>)≤0,则f(x)的图象与x轴必有交点,即△=b<sup>2</sup>-4ac≥0。 2、若△=b<sup>2</sup>-4ac≤0,则f(x)图象与x轴相切或没交点,对一切x都有f(x)≥0。一康托洛维奇不等式若a<sub>i</sub>】0(i=1,2,3,…,n)且sum from i=1 to n a<sub>i</sub>=1又0【λ<sub>1</sub>≤λ<sub>2</sub>≤…≤λ<sub>n</sub>。则有(sum from i=1 to n λ<sub>i</sub>a<sub>i</sub>)(sum from i=1 to n a<sub>i</sub>/λ<sub>i</sub>)≤(λ<sub>1</sub>+λ<sub>n</sub>)<sup>2</sup>/4λ<sub>1</sub>λ<sub>n</sub>。展开更多
用算术平均值A=sum from i=1 to n(a_i)/n作代换,可以把a_i(i=1,2,3……n)写成a_i=A+bi(i=1,2,3……n)的形式。若a_i(i=1,2,3……n)成等差,公差为d,则a_i(i=1,2,3……n)可写成……,A-2d、A-d、A、A+d、A+2d、……的形式(n为奇数);或写...用算术平均值A=sum from i=1 to n(a_i)/n作代换,可以把a_i(i=1,2,3……n)写成a_i=A+bi(i=1,2,3……n)的形式。若a_i(i=1,2,3……n)成等差,公差为d,则a_i(i=1,2,3……n)可写成……,A-2d、A-d、A、A+d、A+2d、……的形式(n为奇数);或写成……,A-3d/2、A-d/2、A+d/2、A+3d/2,……的形式(n为偶数)。若A=(a+b)/2,则a、A、b成等差,可把a、A、展开更多
This paper develops a method which enables us to study the number,existence andstability of periodic solutions and almost periodic solutions of the scalar ordinarydifferential equation.Some applications of the method ...This paper develops a method which enables us to study the number,existence andstability of periodic solutions and almost periodic solutions of the scalar ordinarydifferential equation.Some applications of the method are also given.展开更多
文摘二次函数性质:若二次函数 f(x)=ax<sup>2</sup>+bx+c(a】0) 1、若存在一x<sub>0</sub>,使f(x<sub>0</sub>)≤0,则f(x)的图象与x轴必有交点,即△=b<sup>2</sup>-4ac≥0。 2、若△=b<sup>2</sup>-4ac≤0,则f(x)图象与x轴相切或没交点,对一切x都有f(x)≥0。一康托洛维奇不等式若a<sub>i</sub>】0(i=1,2,3,…,n)且sum from i=1 to n a<sub>i</sub>=1又0【λ<sub>1</sub>≤λ<sub>2</sub>≤…≤λ<sub>n</sub>。则有(sum from i=1 to n λ<sub>i</sub>a<sub>i</sub>)(sum from i=1 to n a<sub>i</sub>/λ<sub>i</sub>)≤(λ<sub>1</sub>+λ<sub>n</sub>)<sup>2</sup>/4λ<sub>1</sub>λ<sub>n</sub>。
文摘用算术平均值A=sum from i=1 to n(a_i)/n作代换,可以把a_i(i=1,2,3……n)写成a_i=A+bi(i=1,2,3……n)的形式。若a_i(i=1,2,3……n)成等差,公差为d,则a_i(i=1,2,3……n)可写成……,A-2d、A-d、A、A+d、A+2d、……的形式(n为奇数);或写成……,A-3d/2、A-d/2、A+d/2、A+3d/2,……的形式(n为偶数)。若A=(a+b)/2,则a、A、b成等差,可把a、A、
文摘This paper develops a method which enables us to study the number,existence andstability of periodic solutions and almost periodic solutions of the scalar ordinarydifferential equation.Some applications of the method are also given.