Double cost function linear quadratic regulator (DLQR) is developed from LQR theory to solve an optimal control problem with a general nonlinear cost function. In addition to the traditional LQ cost function, anothe...Double cost function linear quadratic regulator (DLQR) is developed from LQR theory to solve an optimal control problem with a general nonlinear cost function. In addition to the traditional LQ cost function, another free form cost function was introduced to express the physical need plainly and optimize weights of LQ cost function using the search algorithms. As an instance, DLQR was applied in determining the control input in the front steering angle compensation control (FSAC) model for heavy duty vehicles. The brief simulations show that DLQR is powerful enough to specify the engineering requirements correctly and balance many factors effectively. The concept and applicable field of LQR are expanded by DLQR to optimize the system with a free form cost function.展开更多
For name-based routing/switching in NDN, the key challenges are to manage large-scale forwarding Tables, to lookup long names of variable lengths, and to deal with frequent updates. Hashing associated with proper leng...For name-based routing/switching in NDN, the key challenges are to manage large-scale forwarding Tables, to lookup long names of variable lengths, and to deal with frequent updates. Hashing associated with proper length-detecting is a straightforward yet efficient solution. Binary search strategy can reduce the number of required hash detecting in the worst case. However, to assure the searching path correct in such a schema, either backtrack searching or redundantly storing some prefixes is required, leading to performance or memory issues as a result. In this paper, we make a deep study on the binary search, and propose a novel mechanism to ensure correct searching path without neither additional backtrack costs nor redundant memory consumptions. Along any binary search path, a bloom filter is employed at each branching point to verify whether a said prefix is present, instead of storing that prefix here. By this means, we can gain significantly optimization on memory efficiency, at the cost of bloom checking before each detecting. Our evaluation experiments on both real-world and randomly synthesized data sets demonstrate our superiorities clearly展开更多
An approach for parameter estimation of proportional-integral-derivative(PID) control system using a new nonlinear programming(NLP) algorithm was proposed.SQP/IIPM algorithm is a sequential quadratic programming(SQP) ...An approach for parameter estimation of proportional-integral-derivative(PID) control system using a new nonlinear programming(NLP) algorithm was proposed.SQP/IIPM algorithm is a sequential quadratic programming(SQP) based algorithm that derives its search directions by solving quadratic programming(QP) subproblems via an infeasible interior point method(IIPM) and evaluates step length adaptively via a simple line search and/or a quadratic search algorithm depending on the termination of the IIPM solver.The task of tuning PI/PID parameters for the first-and second-order systems was modeled as constrained NLP problem. SQP/IIPM algorithm was applied to determining the optimum parameters for the PI/PID control systems.To assess the performance of the proposed method,a Matlab simulation of PID controller tuning was conducted to compare the proposed SQP/IIPM algorithm with the gain and phase margin(GPM) method and Ziegler-Nichols(ZN) method.The results reveal that,for both step and impulse response tests,the PI/PID controller using SQP/IIPM optimization algorithm consistently reduce rise time,settling-time and remarkably lower overshoot compared to GPM and ZN methods,and the proposed method improves the robustness and effectiveness of numerical optimization of PID control systems.展开更多
In this paper,quadratic 0-1 programming problem (I) is considered, in terms of its features quadratic 0-1 programming problem is solved by linear approxity heurstic algrothm and a developed tabu search ahgrothm .
Minimizing network coding resources of multicast networks,such as the number of coding nodes or links,has been proved to be NP-hard,and taking propagation delay into account makes the problem more complicated. To reso...Minimizing network coding resources of multicast networks,such as the number of coding nodes or links,has been proved to be NP-hard,and taking propagation delay into account makes the problem more complicated. To resolve this optimal problem,an integer encoding routing-based genetic algorithm( REGA) is presented to map the optimization problem into a genetic algorithm( GA)framework. Moreover,to speed up the search process of the algorithm,an efficient local search procedure which can reduce the searching space size is designed for searching the feasible solution.Compared with the binary link state encoding representation genetic algorithm( BLSGA),the chromosome length of REGA is shorter and just depends on the number of sinks. Simulation results show the advantages of the algorithm in terms of getting the optimal solution and algorithmic convergence speed.展开更多
In this paper,we present a smoothing Newton-like method for solving nonlinear systems of equalities and inequalities.By using the so-called max function,we transfer the inequalities into a system of semismooth equalit...In this paper,we present a smoothing Newton-like method for solving nonlinear systems of equalities and inequalities.By using the so-called max function,we transfer the inequalities into a system of semismooth equalities.Then a smoothing Newton-like method is proposed for solving the reformulated system,which only needs to solve one system of linear equations and to perform one line search at each iteration. The global and local quadratic convergence are studied under appropriate assumptions. Numerical examples show that the new approach is effective.展开更多
This paper puts forward adaptive anti collision algorithm based on two fork tree decomposition. New search algorithm built on the basis of binary-tree algorithm, using the uniqueness of the label EPC, to estimate the ...This paper puts forward adaptive anti collision algorithm based on two fork tree decomposition. New search algorithm built on the basis of binary-tree algorithm, using the uniqueness of the label EPC, to estimate the distribution of label by slot allocation, the huge and complicated two fork tree is decomposed into several simple binary-tree by search the collision slots for binary-tree, so, it can simplifies the search process. The algorithm fully considers4 important performance parameters of the reader paging times, transmission delay, energy consumption and throughput label, the simulation results show that, the improved anti-collision algorithm is obviously improved performance than other two fork tree algorithm, it is more suitable for RFID anti-collision protocols.展开更多
In this papert a recursive quadratic programming algorithm is proposed andstudied.The line search functions used are Han's nondifferentiable penalty functionswith a second order penalty term. In order to avoid mar...In this papert a recursive quadratic programming algorithm is proposed andstudied.The line search functions used are Han's nondifferentiable penalty functionswith a second order penalty term. In order to avoid maratos effect,Fukushima's mixeddirection is used as the direction of line search.Finallyt we prove the global convergenceand the local second order convergence of the algorithm.展开更多
Nonlinear resistivity inversion requires efficient artificial neural network(ANN)model for better inversion results.An evolutionary BP neural network(BPNN)approach based on differential evolution(DE)algorithm was pres...Nonlinear resistivity inversion requires efficient artificial neural network(ANN)model for better inversion results.An evolutionary BP neural network(BPNN)approach based on differential evolution(DE)algorithm was presented,which was able to improve global search ability for resistivity tomography 2-D nonlinear inversion.In the proposed method,Tent equation was applied to obtain automatic parameter settings in DE and the restricted parameter Fcrit was used to enhance the ability of converging to global optimum.An implementation of proposed DE-BPNN was given,the network had one hidden layer with 52 nodes and it was trained on 36 datasets and tested on another 4 synthetic datasets.Two abnormity models were used to verify the feasibility and effectiveness of the proposed method,the results show that the proposed DE-BP algorithm has better performance than BP,conventional DE-BP and other chaotic DE-BP methods in stability and accuracy,and higher imaging quality than least square inversion.展开更多
An minimum description length(MDL) criterion is proposed to choose a good partition for a bipartite network. A heuristic algorithm based on combination theory is presented to approach the optimal partition. As the heu...An minimum description length(MDL) criterion is proposed to choose a good partition for a bipartite network. A heuristic algorithm based on combination theory is presented to approach the optimal partition. As the heuristic algorithm automatically searches for the number of partitions, no user intervention is required. Finally, experiments are conducted on various datasets, and the results show that our method generates higher quality results than the state-of-art methods, cross-association and bipartite, recursively induced modules. Experiment results also show the good scalability of the proposed algorithm. The method is applied to traditional Chinese medicine(TCM) formula and Chinese herbal network whose community structure is not well known, and found that it detects significant and it is informative community division.展开更多
Internet search giant Baidu won a second-level prize at the China 2015 National Science and Technology Awards for its technological advancement of machine translation in early January.
Penicillin fermentation is an important part of microbial fermentation. Due to the existence of error date in the independent variables and dependent variables of the penicillin fermentation sample data, the accuracy ...Penicillin fermentation is an important part of microbial fermentation. Due to the existence of error date in the independent variables and dependent variables of the penicillin fermentation sample data, the accuracy of the model of penicillin fermentation is affected. In this paper, an amended harmony search (AHS) algorithm is developed to adjust the hyper-parameters of least squares support vector machine (LS-SVM) in order to build penicillin fermentation process model with prediction accuracy. The AHS algorithm is investigated by unconstrained benchmark functions with different characteristics. Compared with other several optimization approaches, AHS demonstrates a better performance. Moreover, using the simulation data from the PenSim simulation platform to validate the effectiveness of the penicillin fermentation process modeling, experiment results show that the penicillin fermentation process modeling based on the tuned LS-SVM by AHS possesses robustness and generalization ability.展开更多
文摘Double cost function linear quadratic regulator (DLQR) is developed from LQR theory to solve an optimal control problem with a general nonlinear cost function. In addition to the traditional LQ cost function, another free form cost function was introduced to express the physical need plainly and optimize weights of LQ cost function using the search algorithms. As an instance, DLQR was applied in determining the control input in the front steering angle compensation control (FSAC) model for heavy duty vehicles. The brief simulations show that DLQR is powerful enough to specify the engineering requirements correctly and balance many factors effectively. The concept and applicable field of LQR are expanded by DLQR to optimize the system with a free form cost function.
基金supported by the National Natural Science Foundation of China (Grant No. 61472130 and 61702174)the China Postdoctoral Science Foundation funded project
文摘For name-based routing/switching in NDN, the key challenges are to manage large-scale forwarding Tables, to lookup long names of variable lengths, and to deal with frequent updates. Hashing associated with proper length-detecting is a straightforward yet efficient solution. Binary search strategy can reduce the number of required hash detecting in the worst case. However, to assure the searching path correct in such a schema, either backtrack searching or redundantly storing some prefixes is required, leading to performance or memory issues as a result. In this paper, we make a deep study on the binary search, and propose a novel mechanism to ensure correct searching path without neither additional backtrack costs nor redundant memory consumptions. Along any binary search path, a bloom filter is employed at each branching point to verify whether a said prefix is present, instead of storing that prefix here. By this means, we can gain significantly optimization on memory efficiency, at the cost of bloom checking before each detecting. Our evaluation experiments on both real-world and randomly synthesized data sets demonstrate our superiorities clearly
基金Project(60874070) supported by the National Natural Science Foundation of ChinaProject(20070533131) supported by the National Research Foundation for the Doctoral Program of Higher Education of ChinaProject supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,Ministry of Education of China
文摘An approach for parameter estimation of proportional-integral-derivative(PID) control system using a new nonlinear programming(NLP) algorithm was proposed.SQP/IIPM algorithm is a sequential quadratic programming(SQP) based algorithm that derives its search directions by solving quadratic programming(QP) subproblems via an infeasible interior point method(IIPM) and evaluates step length adaptively via a simple line search and/or a quadratic search algorithm depending on the termination of the IIPM solver.The task of tuning PI/PID parameters for the first-and second-order systems was modeled as constrained NLP problem. SQP/IIPM algorithm was applied to determining the optimum parameters for the PI/PID control systems.To assess the performance of the proposed method,a Matlab simulation of PID controller tuning was conducted to compare the proposed SQP/IIPM algorithm with the gain and phase margin(GPM) method and Ziegler-Nichols(ZN) method.The results reveal that,for both step and impulse response tests,the PI/PID controller using SQP/IIPM optimization algorithm consistently reduce rise time,settling-time and remarkably lower overshoot compared to GPM and ZN methods,and the proposed method improves the robustness and effectiveness of numerical optimization of PID control systems.
文摘In this paper,quadratic 0-1 programming problem (I) is considered, in terms of its features quadratic 0-1 programming problem is solved by linear approxity heurstic algrothm and a developed tabu search ahgrothm .
基金Supported by the National Natural Science Foundation of China(No.61473179)Shandong Province Higher Educational Science and Technology Program(No.J16LN20)+1 种基金Natural Science Foundation of Shandong Province(No.ZR2016FM18)the Youth Scholars Development Program of Shandong University of Technology
文摘Minimizing network coding resources of multicast networks,such as the number of coding nodes or links,has been proved to be NP-hard,and taking propagation delay into account makes the problem more complicated. To resolve this optimal problem,an integer encoding routing-based genetic algorithm( REGA) is presented to map the optimization problem into a genetic algorithm( GA)framework. Moreover,to speed up the search process of the algorithm,an efficient local search procedure which can reduce the searching space size is designed for searching the feasible solution.Compared with the binary link state encoding representation genetic algorithm( BLSGA),the chromosome length of REGA is shorter and just depends on the number of sinks. Simulation results show the advantages of the algorithm in terms of getting the optimal solution and algorithmic convergence speed.
基金supported by Guangdong Provincial Zhujiang Scholar Award Project,National Science Foundation of China(10671163,10871031)the National Basic Research Program under the Grant 2005CB321703Scientific Research Fund of Hunan Provincial Education Department(06A069,06C824)
文摘In this paper,we present a smoothing Newton-like method for solving nonlinear systems of equalities and inequalities.By using the so-called max function,we transfer the inequalities into a system of semismooth equalities.Then a smoothing Newton-like method is proposed for solving the reformulated system,which only needs to solve one system of linear equations and to perform one line search at each iteration. The global and local quadratic convergence are studied under appropriate assumptions. Numerical examples show that the new approach is effective.
文摘This paper puts forward adaptive anti collision algorithm based on two fork tree decomposition. New search algorithm built on the basis of binary-tree algorithm, using the uniqueness of the label EPC, to estimate the distribution of label by slot allocation, the huge and complicated two fork tree is decomposed into several simple binary-tree by search the collision slots for binary-tree, so, it can simplifies the search process. The algorithm fully considers4 important performance parameters of the reader paging times, transmission delay, energy consumption and throughput label, the simulation results show that, the improved anti-collision algorithm is obviously improved performance than other two fork tree algorithm, it is more suitable for RFID anti-collision protocols.
文摘In this papert a recursive quadratic programming algorithm is proposed andstudied.The line search functions used are Han's nondifferentiable penalty functionswith a second order penalty term. In order to avoid maratos effect,Fukushima's mixeddirection is used as the direction of line search.Finallyt we prove the global convergenceand the local second order convergence of the algorithm.
基金Project(20120162110015)supported by the Research Fund for the Doctoral Program of Higher Education,ChinaProject(41004053)supported by the National Natural Science Foundation of ChinaProject(12c0241)supported by Scientific Research Fund of Hunan Provincial Education Department,China
文摘Nonlinear resistivity inversion requires efficient artificial neural network(ANN)model for better inversion results.An evolutionary BP neural network(BPNN)approach based on differential evolution(DE)algorithm was presented,which was able to improve global search ability for resistivity tomography 2-D nonlinear inversion.In the proposed method,Tent equation was applied to obtain automatic parameter settings in DE and the restricted parameter Fcrit was used to enhance the ability of converging to global optimum.An implementation of proposed DE-BPNN was given,the network had one hidden layer with 52 nodes and it was trained on 36 datasets and tested on another 4 synthetic datasets.Two abnormity models were used to verify the feasibility and effectiveness of the proposed method,the results show that the proposed DE-BP algorithm has better performance than BP,conventional DE-BP and other chaotic DE-BP methods in stability and accuracy,and higher imaging quality than least square inversion.
基金Projects(61363037,31071700)supported by the National Natural Science Foundation of ChinaProject(2011GXNSFD018025)supported by the Natural Science Key Foundation of Guangxi Province,ChinaProject(KYTZ201108)supported by the Development Foundation of Chengdu University of Information Technology,China
文摘An minimum description length(MDL) criterion is proposed to choose a good partition for a bipartite network. A heuristic algorithm based on combination theory is presented to approach the optimal partition. As the heuristic algorithm automatically searches for the number of partitions, no user intervention is required. Finally, experiments are conducted on various datasets, and the results show that our method generates higher quality results than the state-of-art methods, cross-association and bipartite, recursively induced modules. Experiment results also show the good scalability of the proposed algorithm. The method is applied to traditional Chinese medicine(TCM) formula and Chinese herbal network whose community structure is not well known, and found that it detects significant and it is informative community division.
文摘Internet search giant Baidu won a second-level prize at the China 2015 National Science and Technology Awards for its technological advancement of machine translation in early January.
基金The authors wish to thank the editor and anonymous referees for their constructive comments and recommendations, which have significantly improved the presentation of this paper. This work is supported by National Nature Science Foundation of China (Grant Nos. 60674021, 61273155).
文摘Penicillin fermentation is an important part of microbial fermentation. Due to the existence of error date in the independent variables and dependent variables of the penicillin fermentation sample data, the accuracy of the model of penicillin fermentation is affected. In this paper, an amended harmony search (AHS) algorithm is developed to adjust the hyper-parameters of least squares support vector machine (LS-SVM) in order to build penicillin fermentation process model with prediction accuracy. The AHS algorithm is investigated by unconstrained benchmark functions with different characteristics. Compared with other several optimization approaches, AHS demonstrates a better performance. Moreover, using the simulation data from the PenSim simulation platform to validate the effectiveness of the penicillin fermentation process modeling, experiment results show that the penicillin fermentation process modeling based on the tuned LS-SVM by AHS possesses robustness and generalization ability.