A new type of high-power broadband superfluorescent source of Yb3+-doped double-cladding photonic crystal fiber is reported experimentally, which is pumped at 976 nm by a high-power laser diode with the end-coupling m...A new type of high-power broadband superfluorescent source of Yb3+-doped double-cladding photonic crystal fiber is reported experimentally, which is pumped at 976 nm by a high-power laser diode with the end-coupling method. We have obtained a smooth broadband output of superfluorescence. The maximum output power is 1.649 W with a slope efficiency of 56.7%. The 3 dB bandwidth is 22.4 nm.To the best of our knowledge,this is the first report about SFS with such high output power of 1.649 W.展开更多
MXenes are emerging two-dimensional(2D)nanomaterials composed of transition metal carbides and/or nitrides and possess unique layered structures with abundant surface functional groups,which enable them with excellent...MXenes are emerging two-dimensional(2D)nanomaterials composed of transition metal carbides and/or nitrides and possess unique layered structures with abundant surface functional groups,which enable them with excellent and tunable properties.MXenes films can be solution-processed in polar solvents and are very suitable for optoelectronic device applications.Especially,Ti_(3)C_(2)T_(x) MXene with the clear advantages of facile synthesis,flexible surface controlling,easily tunable work function,high optical transmittance and excellent conductivity shows great potential for applications in organic/perovskite optoelectronic devices.Therefore,this review briefly introduces the mainstream synthesis methods,optical and electrical properties of MXenes,and comprehensively summarizes the versatile applications of Ti_(3)C_(2)T_(x) MXene in different functional layers(electrode,interface layer and active layer)of organic/perovskite optoelectronic devices including solar cells and light-emitting diodes.Finally,the current application characteristics and the future possibilities of MXenes in organic/perovskite optoelectronic devices are concluded and discussed.展开更多
Compared to conventional quantum dot light-emitting diodes,tandem quantum dot light-emitting diodes(TQLEDs)possess higher device efficiency and more applications in the field of flat panel display and solid-state ligh...Compared to conventional quantum dot light-emitting diodes,tandem quantum dot light-emitting diodes(TQLEDs)possess higher device efficiency and more applications in the field of flat panel display and solid-state lighting in the future.The TQLED is a multilayer structure device which connects two or more light-emitting units by using an interconnection layer(ICL),which plays an extremely important role in the TQLED.Therefore,realizing an effective ICL is the key to obtain high-efficiency TQLEDs.In this work,the p-type materials polys(3,4-ethylenedioxythiophene),poly(styrenesulfonate)(PEDOT:PSS)and the n-type material zinc magnesium oxide(ZnMgO),were used,and an effective hybrid ICL,the PEDOT:PSS-GO/ZnMgO,was obtained by doping graphene oxide(GO)into PEDOT:PSS.The effect of GO additive on the ICL was systematically investigated.It exhibits that the GO additive brought the fine charge carrier generation and injection capacity simultaneously.Thus,the all solutionprocessed red TQLEDs were prepared and characterized for the first time.The maximum luminance of 40877 cd/m^(2) and the highest current efficiency of 19.6 cd/A were achieved,respectively,showing a 21%growth and a 51%increase when compared with those of the reference device without GO.The encouraging results suggest that our investigation paves the way for efficient all solution-processed TQLEDs.展开更多
Two types of organic light-emitting diodes with structures of ITO/N,N'-bis(1-naphthyl)-N,N'-diphenyl,1,1'-biphenyl-4,4'-diamine (NPB)/tris(8-hydroquinolinato)aluminum(Alq 3)/2,9-dimethyl-4,7-diphenyl-l...Two types of organic light-emitting diodes with structures of ITO/N,N'-bis(1-naphthyl)-N,N'-diphenyl,1,1'-biphenyl-4,4'-diamine (NPB)/tris(8-hydroquinolinato)aluminum(Alq 3)/2,9-dimethyl-4,7-diphenyl-l,10-phenanthroline(BCP)/Alq 3:4-dicyanomethylene-2-(tert-butyl)-6-methyl-4H-pyran(DCJTB)/Alq 3 /Al and ITO/NPB/BCP/Alq 3 /Alq 3:DCJTB/Alq 3 /Al were studied.NPB was chosen as a hole-transporting/blue-emitting layer.Alq 3 adjacent to BCP acted as a green emitting layer while that adjacent to the Al cathode acted as an electron-transporting layer.Alq 3 doped with 2 wt.% DCJTB was used as a red emitting layer.The operating principles of the devices were explained by the mechanism of F rster energy transfer and the hole and exciton blocking effect of BCP.It was found that the spectral characteristics of the devices strongly depended on the relative location between the green emitting Alq 3 layer and the BCP layer,as well as their thickness.Pure white emission with the CIE coordinates of (0.33,0.33) was achieved by mixing the three primary colors in the device with the structure of ITO/NPB(30 nm)/BCP(6 nm)/Alq 3 (30 nm)/Alq 3:DCJTB(30 nm)/Alq 3 (30 nm)/Al.The BCP layer played an important role in distributing the exciton energy among the three emitting layers to achieve a balanced white light.The white emission of this device was largely insensitive to the driving voltage (15-27 V) with the insertion of the green emitting Alq 3 layer.展开更多
An organic light-emitting diode (OLED) device with high efficiency and brightness is fabricated by inserting CuOJCu dual inorganic buffer layers between indium-tin-oxide (ITO) and hole-transport layer (HTL). The...An organic light-emitting diode (OLED) device with high efficiency and brightness is fabricated by inserting CuOJCu dual inorganic buffer layers between indium-tin-oxide (ITO) and hole-transport layer (HTL). The CuOx/Cu buffer layer limits the operating current density obviously, while the brightness and efficiency are both enhanced greatly. The highest brightness of the optimized device is achieved to be 14 000 cd/m2 at current efficiency of 3 cd/A and bias voltage of 15 V, which is about 50% higher than that of the compared device without CuOJCu buffer layer. The highest efficiency is achieved to be 5.9 cd/A at 11.6 V with 3 400 cd/m^2, which is almost twice as high as that of the compared device.展开更多
The Ga N based blue light emitting diodes(LEDs) with a thin Al In N layer inserted in front of the electron blocking layer(EBL) are experimentally studied.It is found that inserting a thin EBL can improve the light ou...The Ga N based blue light emitting diodes(LEDs) with a thin Al In N layer inserted in front of the electron blocking layer(EBL) are experimentally studied.It is found that inserting a thin EBL can improve the light output power and reduce the efficiency droop compared with the conventional Al Ga N counterparts.Based on numerical simulation and analysis,the improvement on the electrical and optical characteristics is mainly attributed to the reduction of the electron leakage current,which increases the concentration of carriers in the quantum well(QW) when the thin Al In N layer is used.展开更多
Molybdenum trioxide (MOO3) as a cathode buffer layer is inserted between LiF and A1 to improve the efficiency of white organic light-emitting diodes (OLEDs) in this paper..By changing the MoO3 thickness, a higher ...Molybdenum trioxide (MOO3) as a cathode buffer layer is inserted between LiF and A1 to improve the efficiency of white organic light-emitting diodes (OLEDs) in this paper..By changing the MoO3 thickness, a higher current efficiency of 5.79 cd/A is obtained at a current density of 160 mA/cm2 for the device with a 0.8 nm-thick MoO3 layer as the cathode buffer layer, which is approximately two times greater than that of the device without MoO3. The mechanism for improving the device efficiency is discussed. Moreover, at a voltage of 13 V, the device with a 0.8 nm-thick MoO3 layer achieves a higher luminance of 22370 cd/m2, and the Commission Internationale de I'Eclairage (CIE) color coordinate of the device with 1 nm-thick MoO3 layer is (0.33, 0:34), which shows the best color purity. Simple electron-only devices are tested to confirm the impact of the MoO3 layer on the carrier injection.展开更多
基金This work was supported by the National Natural Science Foun-dation under Grant No.60377010 the"973"Project under GrantNo.2003CB314906 the Research Fund for Doctoral Pro-gramme for Higher Education under Grant No.2003005016 .
文摘A new type of high-power broadband superfluorescent source of Yb3+-doped double-cladding photonic crystal fiber is reported experimentally, which is pumped at 976 nm by a high-power laser diode with the end-coupling method. We have obtained a smooth broadband output of superfluorescence. The maximum output power is 1.649 W with a slope efficiency of 56.7%. The 3 dB bandwidth is 22.4 nm.To the best of our knowledge,this is the first report about SFS with such high output power of 1.649 W.
基金Projects(52063010,51961010)supported by the National Natural Science Foundation of China。
文摘MXenes are emerging two-dimensional(2D)nanomaterials composed of transition metal carbides and/or nitrides and possess unique layered structures with abundant surface functional groups,which enable them with excellent and tunable properties.MXenes films can be solution-processed in polar solvents and are very suitable for optoelectronic device applications.Especially,Ti_(3)C_(2)T_(x) MXene with the clear advantages of facile synthesis,flexible surface controlling,easily tunable work function,high optical transmittance and excellent conductivity shows great potential for applications in organic/perovskite optoelectronic devices.Therefore,this review briefly introduces the mainstream synthesis methods,optical and electrical properties of MXenes,and comprehensively summarizes the versatile applications of Ti_(3)C_(2)T_(x) MXene in different functional layers(electrode,interface layer and active layer)of organic/perovskite optoelectronic devices including solar cells and light-emitting diodes.Finally,the current application characteristics and the future possibilities of MXenes in organic/perovskite optoelectronic devices are concluded and discussed.
基金Project(11904298)supported by the National Natural Science Foundation of ChinaProject(cstc2020jcyj-msxm X0586)supported by Chongqing Natural Science Foundation,ChinaProject(S202010635001)supported by Chongqing Municipal Training Program of Innovation and Entrepreneurship for Undergraduates,China。
文摘Compared to conventional quantum dot light-emitting diodes,tandem quantum dot light-emitting diodes(TQLEDs)possess higher device efficiency and more applications in the field of flat panel display and solid-state lighting in the future.The TQLED is a multilayer structure device which connects two or more light-emitting units by using an interconnection layer(ICL),which plays an extremely important role in the TQLED.Therefore,realizing an effective ICL is the key to obtain high-efficiency TQLEDs.In this work,the p-type materials polys(3,4-ethylenedioxythiophene),poly(styrenesulfonate)(PEDOT:PSS)and the n-type material zinc magnesium oxide(ZnMgO),were used,and an effective hybrid ICL,the PEDOT:PSS-GO/ZnMgO,was obtained by doping graphene oxide(GO)into PEDOT:PSS.The effect of GO additive on the ICL was systematically investigated.It exhibits that the GO additive brought the fine charge carrier generation and injection capacity simultaneously.Thus,the all solutionprocessed red TQLEDs were prepared and characterized for the first time.The maximum luminance of 40877 cd/m^(2) and the highest current efficiency of 19.6 cd/A were achieved,respectively,showing a 21%growth and a 51%increase when compared with those of the reference device without GO.The encouraging results suggest that our investigation paves the way for efficient all solution-processed TQLEDs.
基金supported by the National Natural Science Foundation of China (Grant Nos.60877005 and 60777025)the Beijing Natural Science Foundation (Grant No.2062019)+4 种基金Beijing NOVA Program (Grant No.2006B20)Program for New Century Excellent Talents in University(Grant No.NCET-08-0717)State Key Project of Basic Research (Grant No.2010CB327704)Key Project of Ministry of Education (Grant No.109009)the 111 Project (Grant No.B08002)
文摘Two types of organic light-emitting diodes with structures of ITO/N,N'-bis(1-naphthyl)-N,N'-diphenyl,1,1'-biphenyl-4,4'-diamine (NPB)/tris(8-hydroquinolinato)aluminum(Alq 3)/2,9-dimethyl-4,7-diphenyl-l,10-phenanthroline(BCP)/Alq 3:4-dicyanomethylene-2-(tert-butyl)-6-methyl-4H-pyran(DCJTB)/Alq 3 /Al and ITO/NPB/BCP/Alq 3 /Alq 3:DCJTB/Alq 3 /Al were studied.NPB was chosen as a hole-transporting/blue-emitting layer.Alq 3 adjacent to BCP acted as a green emitting layer while that adjacent to the Al cathode acted as an electron-transporting layer.Alq 3 doped with 2 wt.% DCJTB was used as a red emitting layer.The operating principles of the devices were explained by the mechanism of F rster energy transfer and the hole and exciton blocking effect of BCP.It was found that the spectral characteristics of the devices strongly depended on the relative location between the green emitting Alq 3 layer and the BCP layer,as well as their thickness.Pure white emission with the CIE coordinates of (0.33,0.33) was achieved by mixing the three primary colors in the device with the structure of ITO/NPB(30 nm)/BCP(6 nm)/Alq 3 (30 nm)/Alq 3:DCJTB(30 nm)/Alq 3 (30 nm)/Al.The BCP layer played an important role in distributing the exciton energy among the three emitting layers to achieve a balanced white light.The white emission of this device was largely insensitive to the driving voltage (15-27 V) with the insertion of the green emitting Alq 3 layer.
基金supported by the National Natural Science Foundation of China(No.61274063)
文摘An organic light-emitting diode (OLED) device with high efficiency and brightness is fabricated by inserting CuOJCu dual inorganic buffer layers between indium-tin-oxide (ITO) and hole-transport layer (HTL). The CuOx/Cu buffer layer limits the operating current density obviously, while the brightness and efficiency are both enhanced greatly. The highest brightness of the optimized device is achieved to be 14 000 cd/m2 at current efficiency of 3 cd/A and bias voltage of 15 V, which is about 50% higher than that of the compared device without CuOJCu buffer layer. The highest efficiency is achieved to be 5.9 cd/A at 11.6 V with 3 400 cd/m^2, which is almost twice as high as that of the compared device.
基金supported by the Key Scientific Research Project of Higher Education of Henan Province(No.15A510033)
文摘The Ga N based blue light emitting diodes(LEDs) with a thin Al In N layer inserted in front of the electron blocking layer(EBL) are experimentally studied.It is found that inserting a thin EBL can improve the light output power and reduce the efficiency droop compared with the conventional Al Ga N counterparts.Based on numerical simulation and analysis,the improvement on the electrical and optical characteristics is mainly attributed to the reduction of the electron leakage current,which increases the concentration of carriers in the quantum well(QW) when the thin Al In N layer is used.
基金supported by the National Natural Science Foundation of China(No.61076066)the Doctor Foundation of Shaanxi University of Scienceand Technology(No.BJ09-07)
文摘Molybdenum trioxide (MOO3) as a cathode buffer layer is inserted between LiF and A1 to improve the efficiency of white organic light-emitting diodes (OLEDs) in this paper..By changing the MoO3 thickness, a higher current efficiency of 5.79 cd/A is obtained at a current density of 160 mA/cm2 for the device with a 0.8 nm-thick MoO3 layer as the cathode buffer layer, which is approximately two times greater than that of the device without MoO3. The mechanism for improving the device efficiency is discussed. Moreover, at a voltage of 13 V, the device with a 0.8 nm-thick MoO3 layer achieves a higher luminance of 22370 cd/m2, and the Commission Internationale de I'Eclairage (CIE) color coordinate of the device with 1 nm-thick MoO3 layer is (0.33, 0:34), which shows the best color purity. Simple electron-only devices are tested to confirm the impact of the MoO3 layer on the carrier injection.