A novel unselective regrowth buried heterostructure long-wavelength superluminescent diode (SLD) with a graded composition bulk InGaAs active region is developed by metalorganic vapor phase epitaxy (MOVPE). At a 1...A novel unselective regrowth buried heterostructure long-wavelength superluminescent diode (SLD) with a graded composition bulk InGaAs active region is developed by metalorganic vapor phase epitaxy (MOVPE). At a 150mA injection current, the full width at half maximum of the emission spectrum of the SLD is about 72nm, ranging from 1602 to 1674nm. The emission spectrum is smooth and flat. The ripple of the spectrum is less than 0.3dB at any wavelength from 1550 to 1700nm. An output power of 4.3mW is obtained at a 200mA injection current under continuous-wave operation at room temperature. This device is suitable for the applications of light sources for gas detectors and L-band optical fiber communications.展开更多
A bilayer model with ohmic anode contact and injection limited cathode contact has been proposed to calculate the recombination efficiency and recombination zone width of the device. The effects of the thickness of ho...A bilayer model with ohmic anode contact and injection limited cathode contact has been proposed to calculate the recombination efficiency and recombination zone width of the device. The effects of the thickness of hole transport layer and the barriers of organic/organic interface on the combination efficiency and recombination width have been discussed. It is found that: (1) When the electrons are blocked fully and the holes are not blocked significantly at the organic/organic interface, for a given Lh/L, the recombination efficiency increases with increasing the applied voltage, but at a higher applied voltage, the recombination efficiency decreases with increasing Lh/L; (2) The recombination efficiency increases with increasing applied voltage and Hh', and when applied voltage and Hh' exceed some value, the recombination efficiency appears as a plateau; (3) The recombination width decreases with increasing the applied voltage and Lh/L. This model might explain the relative experiment phenomena.展开更多
A novel acceptor material,9-(4′-(4,6-diphenyl-1,3,5-triazin-2-yl)-[1,1′-biphenyl]-3-yl)-9H-carbazole(o-DTPPC)was developed to form interface exciplex with commonly used donors,to maximize the performances of red pho...A novel acceptor material,9-(4′-(4,6-diphenyl-1,3,5-triazin-2-yl)-[1,1′-biphenyl]-3-yl)-9H-carbazole(o-DTPPC)was developed to form interface exciplex with commonly used donors,to maximize the performances of red phosphorescent organic light emitting diodes(PHOLEDs).It is found that the exciplex involving 4,4′-(cyclohexane-1,1-diyl)bis(N,N-di-p-tolylaniline)(TAPC)exhibits the most significant thermally activated delayed fluorescence(TADF)property,derived from the high triplet energy level as well as strong hole-transporting ability of TAPC.Intriguingly,it is the same donor-acceptor combination which achieved the highest device efficiency when adopted as the host for red PHOLEDs.Maximum efficiencies as high as31.36 cd A^(-1),17.95 lm W^(-1),and 21.01%for the current efficiency,power efficiency and external quantum efficiency,respectively with low efficiency roll-off were realized.The improved performance can be attributed to the efficient TADF properties of the interface exciplex-forming host constituting TAPC,benefiting the F?rster energy transfer.The article first underlines the importance of the constituting molecules in the interface exciplex-forming hosts,shedding new insight about the choice of interface exciplex as the host for PHOLEDs,which may lead to even higher performances,paving their ways towards practical applications.展开更多
Under different red (R):blue (B) photon flux ratios, the growth performance of rapeseed (Brassica napus L.) is significantly different. Rapeseed under high R ratios shows shade response, while under high B rati...Under different red (R):blue (B) photon flux ratios, the growth performance of rapeseed (Brassica napus L.) is significantly different. Rapeseed under high R ratios shows shade response, while under high B ratios it shows sun-type morphology. Rapeseed under monochromatic red or blue light is seriously stressed. Transcriptomic and proteomic methods were used to analyze the metabolic pathway change of rapeseed (cv. "Zhongshuang 11") leaves under different R:B photon flux ratios (including 100R:0B%, 75R:25B%, 25R:75B%, and 0R:100B%), based on digital gene expression (DGE) and two-dimensional gel electrophoresis (2-DE). For DGE analysis, 2054 differentially expressed transcripts (llog2(fold change)l〉1, q〈0.005) were detected among the treatments. High R ratios (100R:0B% and 75R:25B%) enhanced the expression of cellular structural components, mainly the cell wall and cell membrane. These components participated in plant epidermis development and anatomical structure morphogenesis. This might be related to the shade response induced by red light. High B ratios (25R:75B% and 0R:100B%) promoted the expression of chloroplast-related components, which might be involved in the formation of sun-type chloroplast induced by blue light. For 2-DE analysis, 37 protein spots showed more than a 2-fold difference in expression among the treatments. Monochromatic light (ML; 100R:0B% and OR: 100B%) stimulated accumulation of proteins associated with antioxidation, photosystem II (PSII), DNA and ribosome repairs, while compound light (CL; 75R:25B% and 25R:75B%) accelerated accumulation of proteins associated with carbohydrate, nucleic acid, amino acid, vitamin, and xanthophyll metabolisms. These findings can be useful in understanding the response mechanisms of rapeseed leaves to different R:B photon flux ratios.展开更多
In this review, we describe the principles of the tunnel junction, self-assembled monolayer (SAM) application techniques, experimental testbed fabrication, and characterization of the films and devices. In addition,...In this review, we describe the principles of the tunnel junction, self-assembled monolayer (SAM) application techniques, experimental testbed fabrication, and characterization of the films and devices. In addition, techniques for directed application, removal, and functionalization of the monolayers are discussed. Bottom-up fabrication techniques have seen increased attention because of their versatility and ease of use. These films see mechanical uses as surface modifiers and micro-scale lubricants. Advances in nanowatt electronics and ultra-low power sensors have opened up an energy harvesting niche for solutions which would have proven ineffective just some years ago. The focus of this study is the two- terminal junction which has potential applications in THz rectification for energy harvesting, medical imaging, and defense sensing. The quantum theory of operation behind these devices is touched on briefly---describing tunneling through the organic monolayers. Commentary on trends in research and potential future work are presented as well.展开更多
文摘A novel unselective regrowth buried heterostructure long-wavelength superluminescent diode (SLD) with a graded composition bulk InGaAs active region is developed by metalorganic vapor phase epitaxy (MOVPE). At a 150mA injection current, the full width at half maximum of the emission spectrum of the SLD is about 72nm, ranging from 1602 to 1674nm. The emission spectrum is smooth and flat. The ripple of the spectrum is less than 0.3dB at any wavelength from 1550 to 1700nm. An output power of 4.3mW is obtained at a 200mA injection current under continuous-wave operation at room temperature. This device is suitable for the applications of light sources for gas detectors and L-band optical fiber communications.
基金Excellent Youth Foundation of Hunan Province(03JJY1008) Science Foundation for Post-doctorate of China(2004035083)
文摘A bilayer model with ohmic anode contact and injection limited cathode contact has been proposed to calculate the recombination efficiency and recombination zone width of the device. The effects of the thickness of hole transport layer and the barriers of organic/organic interface on the combination efficiency and recombination width have been discussed. It is found that: (1) When the electrons are blocked fully and the holes are not blocked significantly at the organic/organic interface, for a given Lh/L, the recombination efficiency increases with increasing the applied voltage, but at a higher applied voltage, the recombination efficiency decreases with increasing Lh/L; (2) The recombination efficiency increases with increasing applied voltage and Hh', and when applied voltage and Hh' exceed some value, the recombination efficiency appears as a plateau; (3) The recombination width decreases with increasing the applied voltage and Lh/L. This model might explain the relative experiment phenomena.
基金supported by the National Key Basic Research and Development Program of China (2016YFB041003, 2016YFB0400702)the National Basic Research Program of China (2015CB655002)the National Natural Science Foundation of China (51525304, U1601651)
文摘A novel acceptor material,9-(4′-(4,6-diphenyl-1,3,5-triazin-2-yl)-[1,1′-biphenyl]-3-yl)-9H-carbazole(o-DTPPC)was developed to form interface exciplex with commonly used donors,to maximize the performances of red phosphorescent organic light emitting diodes(PHOLEDs).It is found that the exciplex involving 4,4′-(cyclohexane-1,1-diyl)bis(N,N-di-p-tolylaniline)(TAPC)exhibits the most significant thermally activated delayed fluorescence(TADF)property,derived from the high triplet energy level as well as strong hole-transporting ability of TAPC.Intriguingly,it is the same donor-acceptor combination which achieved the highest device efficiency when adopted as the host for red PHOLEDs.Maximum efficiencies as high as31.36 cd A^(-1),17.95 lm W^(-1),and 21.01%for the current efficiency,power efficiency and external quantum efficiency,respectively with low efficiency roll-off were realized.The improved performance can be attributed to the efficient TADF properties of the interface exciplex-forming host constituting TAPC,benefiting the F?rster energy transfer.The article first underlines the importance of the constituting molecules in the interface exciplex-forming hosts,shedding new insight about the choice of interface exciplex as the host for PHOLEDs,which may lead to even higher performances,paving their ways towards practical applications.
基金Project supported by the National Key R&D Program of China(No.2017YFB0403903)
文摘Under different red (R):blue (B) photon flux ratios, the growth performance of rapeseed (Brassica napus L.) is significantly different. Rapeseed under high R ratios shows shade response, while under high B ratios it shows sun-type morphology. Rapeseed under monochromatic red or blue light is seriously stressed. Transcriptomic and proteomic methods were used to analyze the metabolic pathway change of rapeseed (cv. "Zhongshuang 11") leaves under different R:B photon flux ratios (including 100R:0B%, 75R:25B%, 25R:75B%, and 0R:100B%), based on digital gene expression (DGE) and two-dimensional gel electrophoresis (2-DE). For DGE analysis, 2054 differentially expressed transcripts (llog2(fold change)l〉1, q〈0.005) were detected among the treatments. High R ratios (100R:0B% and 75R:25B%) enhanced the expression of cellular structural components, mainly the cell wall and cell membrane. These components participated in plant epidermis development and anatomical structure morphogenesis. This might be related to the shade response induced by red light. High B ratios (25R:75B% and 0R:100B%) promoted the expression of chloroplast-related components, which might be involved in the formation of sun-type chloroplast induced by blue light. For 2-DE analysis, 37 protein spots showed more than a 2-fold difference in expression among the treatments. Monochromatic light (ML; 100R:0B% and OR: 100B%) stimulated accumulation of proteins associated with antioxidation, photosystem II (PSII), DNA and ribosome repairs, while compound light (CL; 75R:25B% and 25R:75B%) accelerated accumulation of proteins associated with carbohydrate, nucleic acid, amino acid, vitamin, and xanthophyll metabolisms. These findings can be useful in understanding the response mechanisms of rapeseed leaves to different R:B photon flux ratios.
文摘In this review, we describe the principles of the tunnel junction, self-assembled monolayer (SAM) application techniques, experimental testbed fabrication, and characterization of the films and devices. In addition, techniques for directed application, removal, and functionalization of the monolayers are discussed. Bottom-up fabrication techniques have seen increased attention because of their versatility and ease of use. These films see mechanical uses as surface modifiers and micro-scale lubricants. Advances in nanowatt electronics and ultra-low power sensors have opened up an energy harvesting niche for solutions which would have proven ineffective just some years ago. The focus of this study is the two- terminal junction which has potential applications in THz rectification for energy harvesting, medical imaging, and defense sensing. The quantum theory of operation behind these devices is touched on briefly---describing tunneling through the organic monolayers. Commentary on trends in research and potential future work are presented as well.