A new approach for assembling amperometric mushroom pulp tissue based membrane electrode for determination of L tyrosine analysis is proposed. Ferrocene is used as a mediator of electron transfer between tyrosinase ...A new approach for assembling amperometric mushroom pulp tissue based membrane electrode for determination of L tyrosine analysis is proposed. Ferrocene is used as a mediator of electron transfer between tyrosinase in mushroom tissue and a graphite electrode. The optimal operation conditions are studied. The linear response range of the biosensor is 2 0×10 -4 to 4 5×10 -3 mol·L -1 with response time of less than 5 min and lifetime of at least 30 d. The biosensor can be applied to practical sample analysis.展开更多
The electrode process of diethyldithiocarbamate on the surface of pyrrhotite was studied using systematic electrochemical analysis, including cyclic voltammetry, chronopotentiometry and galvanostatic. Experimental res...The electrode process of diethyldithiocarbamate on the surface of pyrrhotite was studied using systematic electrochemical analysis, including cyclic voltammetry, chronopotentiometry and galvanostatic. Experimental results show that tetraethylthioram disulphide(TETD) is electrodeposited on pyrrhotite electrode surface in the presence of 1.0×10^-4 mol/L diethyldithiocarbamate when the electrode potential is higher than 0.25 V. The electrochemical kinetics parameters of the electrode process of diethyldithiocarbamate on surface of pyrrhotite are calculated as follows: the exchange current density is 2.48μA/cm^2 , and the transmission coefficient is 0.46. The electrodeposition includes two steps electrochemical reaction. The first reaction is electrochemical adsorption of diethyldithiocarbamatc ion, then the adsorbed ion associates with a diethyldithiocarbamate ion from the solution and forms tetraethylthioram disulphide on the surface of pyrrhotite.展开更多
l'-cysteaminecarbonyl-1-glutathionecarbonyl-ferrocene (Fc-GSH) was synthesized from ferrocene dicarboxylic acid and reduced glutathione (GSH) with 4 steps. IR and 1^H-NMR were used to characterize the products. T...l'-cysteaminecarbonyl-1-glutathionecarbonyl-ferrocene (Fc-GSH) was synthesized from ferrocene dicarboxylic acid and reduced glutathione (GSH) with 4 steps. IR and 1^H-NMR were used to characterize the products. Then Fc-GSH was immobilized on the surface of gold electrode. Cyclic votammetry (CV) was adopted to investigate the electrochemical properties of this Fc-GSH modified electrode in the absence and presence of Cd^2+ aqueous solutions. The peak oxidation potential (Ea) and reduction potential (Ec) of Fc-GSH modified electrode were observed at Ea= 0.74 V and Ec= 0.64 V (vs Ag/AgCl) before the accumulation of Cd^2+. This redox process is a monoelectron chemical reaction. The anodic shift is about 80 mV in the presence of 20 nmol/L of Cd^2+ aqueous solution. Moreover, this shift is in proportion to the concentration of Cd^2+ when the concentration of Cd^2+ is lower than 20 nmol/L. So the modified electrode can be used as probes to detect cadmium ions with the limit of 0.1 nmol/L by cyclic voltammetry.展开更多
The 1.6GeV synchrotron of China Spallation Neutron Source(CSNS)project is a Rapid Cycling Synchrotron (RCS),which accelerates a high-intensity proton beam from 80MeV to 1.6GeV at a repetition rate of 25Hz.The RCS magn...The 1.6GeV synchrotron of China Spallation Neutron Source(CSNS)project is a Rapid Cycling Synchrotron (RCS),which accelerates a high-intensity proton beam from 80MeV to 1.6GeV at a repetition rate of 25Hz.The RCS magnet system consists of 24 dipole magnets(main dipoles),48 quadrupole magnets(main quadrupoles),16 sextupole magnets,some tune shift quadrupoles and corrector magnets.All the magnets are of large aperture for a high beam power of 0.1MW,one design issue is the fringe field at pole end.And the main dipoles and main quadrupoles work at 25Hz repetition rate,the eddy current is an additional issue.In this paper the magnet design of the two kinds of main magnets will be described.展开更多
The CR superconducting magnet is a dipole of the FAIR project of GSI in Germany.The quench of the strand is simulated using FEM software ANSYS.From the simulation,the quench propagation can be visualized. Programming ...The CR superconducting magnet is a dipole of the FAIR project of GSI in Germany.The quench of the strand is simulated using FEM software ANSYS.From the simulation,the quench propagation can be visualized. Programming with APDL,the value of propagation velocity of normal zone is calculated.Also the voltage increasing over time of the strand is computed and pictured.Furthermore,the Minimum Propagation Zone(MPZ)is studied. At last,the relation between the current and the propagation velocity of normal zone,and the influence of initial temperature on quench propagation are studied.展开更多
With the calculation and measuring experiment methods,the effect of vacuum chamber materials' magnetic permeability on field distribution in a dipole magnet is discussed.The results show that when the relative mag...With the calculation and measuring experiment methods,the effect of vacuum chamber materials' magnetic permeability on field distribution in a dipole magnet is discussed.The results show that when the relative magnetic permeability of chamber materialμ_r≠1,it will affect the field uniformity.Once the high field uniformity is required, the material property and size of vacuum chamber in a dipole magnet have to be taken into account carefully.展开更多
Plastic thermo-electrochemical ceils (thermocells) involving aqueous potassium ferricyanide/ferrocyanide electrolyte have been investigated as an alternative to conventional thermoelectrics for thermal energy harves...Plastic thermo-electrochemical ceils (thermocells) involving aqueous potassium ferricyanide/ferrocyanide electrolyte have been investigated as an alternative to conventional thermoelectrics for thermal energy harvesting. Plastic thermocells that consist of all pliable materials such as polyethylene terephthalate (PET), fabrics, and wires are flexible enough to be wearable on the human body and to be wrapped around cylindrical shapes. The performance of the thermocells is enhanced by incorporating carbon nanotubes into activated carbon textiles, due to improved charge transfer at the interface. In cold weather conditions (a surrounding temperature of 5 ℃), the thermocell generates a short-circuit current density of 0.39 A/m2 and maximum power density of 0.46 mW/m2 from body heat (temperature of 36℃). For practical use, we have shown that the thermocell charges up a capacitor when worn on a T-shirt by a person. We also have demonstrated that the electrical energy generated from waste pipe heat using a serial array of the thermocells and voltage converters can power a typical commercial light emitting diode (LED).展开更多
Polarized-light photodetectors are the indispensable elements for practical optical and optoelectronic device applications.Two-dimensional(2D)hybrid perovskite ferroelectrics,in which the coupling of spontaneous polar...Polarized-light photodetectors are the indispensable elements for practical optical and optoelectronic device applications.Two-dimensional(2D)hybrid perovskite ferroelectrics,in which the coupling of spontaneous polarization(P_(s))and light favors the dissociation of photo-induced carriers,have taken a booming position within this portfolio.However,polarized-light photodetectors with a low detectionlimit remain unexplored in this 2D ferroelectric family.In this work,the high-quality individual crystals of a 2D perovskite ferroelectric,BA_(2)CsPb_(2)Br_(7)(1,where BA^(+)is n-butylammonium),were used to fabricate ultrasensitive polarized-light detectors.Its unique bilayered structural motif results in quite strong electric and optical anisotropy with a large absorption ratio of a_(c)/α_(a)≈3.2(λ=405 nm).Besides,the presence of ferroelectric Psalso endows high built-in electric field along the polar c-axis that favors photoelectric activities.Under an extremely low detectable limit of 40 n W/cm^(2),the detector of 1 exhibits a notable dichroism ratio(I_(ph)^(c)/I_(ph)^(a)≈1.5),a large responsivity of~39.5 m A/W and a specific detectivity of~1.2×10^(12)Jones.Moreover,crystal-based devices of 1 also exhibit a fast response speed(~300μs)and excellent anti-fatigue merits.This work highlights great potentials of hybrid perovskite ferroelectrics toward polarized-light photodetection.展开更多
文摘A new approach for assembling amperometric mushroom pulp tissue based membrane electrode for determination of L tyrosine analysis is proposed. Ferrocene is used as a mediator of electron transfer between tyrosinase in mushroom tissue and a graphite electrode. The optimal operation conditions are studied. The linear response range of the biosensor is 2 0×10 -4 to 4 5×10 -3 mol·L -1 with response time of less than 5 min and lifetime of at least 30 d. The biosensor can be applied to practical sample analysis.
文摘The electrode process of diethyldithiocarbamate on the surface of pyrrhotite was studied using systematic electrochemical analysis, including cyclic voltammetry, chronopotentiometry and galvanostatic. Experimental results show that tetraethylthioram disulphide(TETD) is electrodeposited on pyrrhotite electrode surface in the presence of 1.0×10^-4 mol/L diethyldithiocarbamate when the electrode potential is higher than 0.25 V. The electrochemical kinetics parameters of the electrode process of diethyldithiocarbamate on surface of pyrrhotite are calculated as follows: the exchange current density is 2.48μA/cm^2 , and the transmission coefficient is 0.46. The electrodeposition includes two steps electrochemical reaction. The first reaction is electrochemical adsorption of diethyldithiocarbamatc ion, then the adsorbed ion associates with a diethyldithiocarbamate ion from the solution and forms tetraethylthioram disulphide on the surface of pyrrhotite.
基金Project(20676153) supported by the National Natural Science Foundation of China
文摘l'-cysteaminecarbonyl-1-glutathionecarbonyl-ferrocene (Fc-GSH) was synthesized from ferrocene dicarboxylic acid and reduced glutathione (GSH) with 4 steps. IR and 1^H-NMR were used to characterize the products. Then Fc-GSH was immobilized on the surface of gold electrode. Cyclic votammetry (CV) was adopted to investigate the electrochemical properties of this Fc-GSH modified electrode in the absence and presence of Cd^2+ aqueous solutions. The peak oxidation potential (Ea) and reduction potential (Ec) of Fc-GSH modified electrode were observed at Ea= 0.74 V and Ec= 0.64 V (vs Ag/AgCl) before the accumulation of Cd^2+. This redox process is a monoelectron chemical reaction. The anodic shift is about 80 mV in the presence of 20 nmol/L of Cd^2+ aqueous solution. Moreover, this shift is in proportion to the concentration of Cd^2+ when the concentration of Cd^2+ is lower than 20 nmol/L. So the modified electrode can be used as probes to detect cadmium ions with the limit of 0.1 nmol/L by cyclic voltammetry.
文摘The 1.6GeV synchrotron of China Spallation Neutron Source(CSNS)project is a Rapid Cycling Synchrotron (RCS),which accelerates a high-intensity proton beam from 80MeV to 1.6GeV at a repetition rate of 25Hz.The RCS magnet system consists of 24 dipole magnets(main dipoles),48 quadrupole magnets(main quadrupoles),16 sextupole magnets,some tune shift quadrupoles and corrector magnets.All the magnets are of large aperture for a high beam power of 0.1MW,one design issue is the fringe field at pole end.And the main dipoles and main quadrupoles work at 25Hz repetition rate,the eddy current is an additional issue.In this paper the magnet design of the two kinds of main magnets will be described.
文摘The CR superconducting magnet is a dipole of the FAIR project of GSI in Germany.The quench of the strand is simulated using FEM software ANSYS.From the simulation,the quench propagation can be visualized. Programming with APDL,the value of propagation velocity of normal zone is calculated.Also the voltage increasing over time of the strand is computed and pictured.Furthermore,the Minimum Propagation Zone(MPZ)is studied. At last,the relation between the current and the propagation velocity of normal zone,and the influence of initial temperature on quench propagation are studied.
文摘With the calculation and measuring experiment methods,the effect of vacuum chamber materials' magnetic permeability on field distribution in a dipole magnet is discussed.The results show that when the relative magnetic permeability of chamber materialμ_r≠1,it will affect the field uniformity.Once the high field uniformity is required, the material property and size of vacuum chamber in a dipole magnet have to be taken into account carefully.
文摘Plastic thermo-electrochemical ceils (thermocells) involving aqueous potassium ferricyanide/ferrocyanide electrolyte have been investigated as an alternative to conventional thermoelectrics for thermal energy harvesting. Plastic thermocells that consist of all pliable materials such as polyethylene terephthalate (PET), fabrics, and wires are flexible enough to be wearable on the human body and to be wrapped around cylindrical shapes. The performance of the thermocells is enhanced by incorporating carbon nanotubes into activated carbon textiles, due to improved charge transfer at the interface. In cold weather conditions (a surrounding temperature of 5 ℃), the thermocell generates a short-circuit current density of 0.39 A/m2 and maximum power density of 0.46 mW/m2 from body heat (temperature of 36℃). For practical use, we have shown that the thermocell charges up a capacitor when worn on a T-shirt by a person. We also have demonstrated that the electrical energy generated from waste pipe heat using a serial array of the thermocells and voltage converters can power a typical commercial light emitting diode (LED).
基金supported by the National Natural Science Foundation of China(21622108,21875251,21525104,and 21833010)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB20010200)Youth Innovation Promotion of Chinese Academy of Sciences。
文摘Polarized-light photodetectors are the indispensable elements for practical optical and optoelectronic device applications.Two-dimensional(2D)hybrid perovskite ferroelectrics,in which the coupling of spontaneous polarization(P_(s))and light favors the dissociation of photo-induced carriers,have taken a booming position within this portfolio.However,polarized-light photodetectors with a low detectionlimit remain unexplored in this 2D ferroelectric family.In this work,the high-quality individual crystals of a 2D perovskite ferroelectric,BA_(2)CsPb_(2)Br_(7)(1,where BA^(+)is n-butylammonium),were used to fabricate ultrasensitive polarized-light detectors.Its unique bilayered structural motif results in quite strong electric and optical anisotropy with a large absorption ratio of a_(c)/α_(a)≈3.2(λ=405 nm).Besides,the presence of ferroelectric Psalso endows high built-in electric field along the polar c-axis that favors photoelectric activities.Under an extremely low detectable limit of 40 n W/cm^(2),the detector of 1 exhibits a notable dichroism ratio(I_(ph)^(c)/I_(ph)^(a)≈1.5),a large responsivity of~39.5 m A/W and a specific detectivity of~1.2×10^(12)Jones.Moreover,crystal-based devices of 1 also exhibit a fast response speed(~300μs)and excellent anti-fatigue merits.This work highlights great potentials of hybrid perovskite ferroelectrics toward polarized-light photodetection.