The maximal number of limit cycles for a particular type Ⅲ system x = -y + lx2 + mxy, y =x(1 + ax + by) is studied and some errors that appeared in the paper by Suo Mingxia and Yue Xiting (Annals of Differential Equa...The maximal number of limit cycles for a particular type Ⅲ system x = -y + lx2 + mxy, y =x(1 + ax + by) is studied and some errors that appeared in the paper by Suo Mingxia and Yue Xiting (Annals of Differential Equations, 2003,19(3):397-401) are corrected. By translating the system to be considered into the Lienard type and by using some related properties, we obtain several theorems with suitable conditions coefficients of the system, under which we prove that the system has at most two limit cycles. The conclusions improve the results given in Suo and Yue's paper mentioned above.展开更多
A class of cubic system, which is an accompany system of a quadratic differential one, is studied. It is proved that the system has at most one limit cycle, and the critical point at infinity is a higher order one. Th...A class of cubic system, which is an accompany system of a quadratic differential one, is studied. It is proved that the system has at most one limit cycle, and the critical point at infinity is a higher order one. The structure and algebraic character of the critical point at infinity are obtained.展开更多
文摘The maximal number of limit cycles for a particular type Ⅲ system x = -y + lx2 + mxy, y =x(1 + ax + by) is studied and some errors that appeared in the paper by Suo Mingxia and Yue Xiting (Annals of Differential Equations, 2003,19(3):397-401) are corrected. By translating the system to be considered into the Lienard type and by using some related properties, we obtain several theorems with suitable conditions coefficients of the system, under which we prove that the system has at most two limit cycles. The conclusions improve the results given in Suo and Yue's paper mentioned above.
基金This work is supported by the National Natural Science Foundation of China (Tian Yuan Foundation) (10426010) Natural Science Foundation of Fujian Province (Z0511052)Fujian Educational Bureau (JA04274).
文摘A class of cubic system, which is an accompany system of a quadratic differential one, is studied. It is proved that the system has at most one limit cycle, and the critical point at infinity is a higher order one. The structure and algebraic character of the critical point at infinity are obtained.