期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
活体肝细胞磷31磁共振波谱数据分类 被引量:1
1
作者 桑君 刘毅慧 +2 位作者 王韶卿 刘强 成金勇 《计算机工程与应用》 CSCD 北大核心 2011年第9期236-239,共4页
基于活体肝细胞的31P磁共振波谱图(31Phosphorus Magnetic Resonance Spectroscopy,31P-MRS)对肝细胞数据进行诊断,分为3种类型:肝癌、肝硬化和正常肝。分别运用线性分类器和二次分类器对数据分类,并在分类前进行了特征抽取。线性分类... 基于活体肝细胞的31P磁共振波谱图(31Phosphorus Magnetic Resonance Spectroscopy,31P-MRS)对肝细胞数据进行诊断,分为3种类型:肝癌、肝硬化和正常肝。分别运用线性分类器和二次分类器对数据分类,并在分类前进行了特征抽取。线性分类器和二次分类器在"留一法"中对上述3种类型的分类准确率分别约为81.37%、77.75%、92.30%和95.27%、99.89%、99.70%。实验证明二次分类器相对于线性分类器,明显地提高了分类准确率。 展开更多
关键词 31P 磁共振波谱 线性判别分析 二次分类器
下载PDF
基于镜像学习和复合二次距离的手写汉字识别 被引量:2
2
作者 刘海龙 丁晓青 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第7期1239-1242,共4页
为解决手写汉字识别中的相似字混淆问题,提出了一种基于镜像学习和复合二次距离的识别算法,提高现有的二次分类器对相似汉字的鉴别能力。该算法为识别置信度较低的训练样本生成镜像虚拟样本,通过迭代训练来调整易混淆字符类别间的分类界... 为解决手写汉字识别中的相似字混淆问题,提出了一种基于镜像学习和复合二次距离的识别算法,提高现有的二次分类器对相似汉字的鉴别能力。该算法为识别置信度较低的训练样本生成镜像虚拟样本,通过迭代训练来调整易混淆字符类别间的分类界面,并对二次分类器给出的候选字使用复合二次距离进行两两鉴别,以减少识别错误。在HCL 2000样本库上的实验表明,该算法能有效提高手写汉字识别的性能,测试集上的误识率下降了20%。 展开更多
关键词 手写汉字识别 改进二次分类器 镜像学习 复合距离
原文传递
A multi-class large margin classifier
3
作者 Liang TANG Qi XUAN +2 位作者 Rong XIONG Tie-jun WU Jian CHU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2009年第2期253-262,共10页
Currently there are two approaches for a multi-class support vector classifier(SVC). One is to construct and combine several binary classifiers while the other is to directly consider all classes of data in one optimi... Currently there are two approaches for a multi-class support vector classifier(SVC). One is to construct and combine several binary classifiers while the other is to directly consider all classes of data in one optimization formulation. For a K-class problem(K>2),the first approach has to construct at least K classifiers,and the second approach has to solve a much larger op-timization problem proportional to K by the algorithms developed so far. In this paper,following the second approach,we present a novel multi-class large margin classifier(MLMC). This new machine can solve K-class problems in one optimization formula-tion without increasing the size of the quadratic programming(QP) problem proportional to K. This property allows us to construct just one classifier with as few variables in the QP problem as possible to classify multi-class data,and we can gain the advantage of speed from it especially when K is large. Our experiments indicate that MLMC almost works as well as(sometimes better than) many other multi-class SVCs for some benchmark data classification problems,and obtains a reasonable performance in face recognition application on the AR face database. 展开更多
关键词 MULTI-CLASSIFICATION Support vector machine (SVM) Quadratic programming (QP) problem Large margin
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部