期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于二次分解策略和BiLSTM的短期碳排放预测模型设计
1
作者 张克英 孟拓宁 +1 位作者 刘人境 燕欣宇 《电子设计工程》 2024年第17期6-10,共5页
针对现有短期碳排放预测模型残余噪声大、忽略全局信息的特性导致预测精度不高的问题,提出一种基于二次分解策略和双向长短期记忆神经网络(BiLSTM)的新的短期碳排放预测模型。利用改进的自适应噪声完全集成经验模态分解(ICEEMDAN)方法... 针对现有短期碳排放预测模型残余噪声大、忽略全局信息的特性导致预测精度不高的问题,提出一种基于二次分解策略和双向长短期记忆神经网络(BiLSTM)的新的短期碳排放预测模型。利用改进的自适应噪声完全集成经验模态分解(ICEEMDAN)方法和二次分解思想,将原始时间序列分解为多个本征模态函数(imfs);利用鲸鱼优化算法(WOA)优化的双向长短期记忆神经网络(BiLSTM)对所有函数序列进行预测,并将每个函数序列的预测值累加得到最终结果。实验结果显示,该文提出模型的R2达到0.999,MAPE和RMSE分别为1.3×10-3和97.4,优于其他对比模型,有效降低了预测误差。 展开更多
关键词 短期碳排放预测 二次分解策略 BiLSTM ICEEMDAN分解 鲸鱼算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部