配电网参数受天气条件和负载条件等因素影响会发生变化。由于传感装置安装有限、数据延时传输等因素,无法实时获得配电网准确参数,进而给传统故障定位方法的精度带来影响。针对以上问题,通过建立配电网数字孪生模型,基于配电网数字孪生...配电网参数受天气条件和负载条件等因素影响会发生变化。由于传感装置安装有限、数据延时传输等因素,无法实时获得配电网准确参数,进而给传统故障定位方法的精度带来影响。针对以上问题,通过建立配电网数字孪生模型,基于配电网数字孪生模型的参数自修正技术,提出了一种定位模型随参数变化动态校正的配电网故障定位方法。同时,搭建了基于数字孪生服务器和实时数字仿真系统(real time digital system, RTDS)的数字孪生平台,实现了配电网实时的物理模型和数字孪生模型的同步运行。在算例仿真中,利用该数字孪生平台,验证了基于数字孪生技术的配电网故障定法方法。结果表明,该方法可在各类系统运行条件下实时修正配电网参数,显著提高配电网故障定位的速度和精度。展开更多
针对工业机械设备实时监测中不可控因素导致的振动信号数据缺失问题,提出一种基于自适应二次临近项交替方向乘子算法(adaptive quadratic proximity-alternating direction method of multipliers, AQ-ADMM)的压缩感知缺失信号重构方法...针对工业机械设备实时监测中不可控因素导致的振动信号数据缺失问题,提出一种基于自适应二次临近项交替方向乘子算法(adaptive quadratic proximity-alternating direction method of multipliers, AQ-ADMM)的压缩感知缺失信号重构方法。AQ-ADMM算法在经典交替方向乘子算法算法迭代过程中添加二次临近项,且能够自适应选取惩罚参数。首先在数据中心建立信号参考数据库用于构造初始字典,然后将K-奇异值分解(K-singular value decomposition, K-SVD)字典学习算法和AQ-ADMM算法结合重构缺失信号。对仿真信号和两种真实轴承信号数据集添加高斯白噪声后作为样本,试验结果表明当信号压缩率在50%~70%时,所提方法性能指标明显优于其它传统方法,在重构信号的同时实现了对含缺失数据机械振动信号的快速精确修复。展开更多
文摘配电网参数受天气条件和负载条件等因素影响会发生变化。由于传感装置安装有限、数据延时传输等因素,无法实时获得配电网准确参数,进而给传统故障定位方法的精度带来影响。针对以上问题,通过建立配电网数字孪生模型,基于配电网数字孪生模型的参数自修正技术,提出了一种定位模型随参数变化动态校正的配电网故障定位方法。同时,搭建了基于数字孪生服务器和实时数字仿真系统(real time digital system, RTDS)的数字孪生平台,实现了配电网实时的物理模型和数字孪生模型的同步运行。在算例仿真中,利用该数字孪生平台,验证了基于数字孪生技术的配电网故障定法方法。结果表明,该方法可在各类系统运行条件下实时修正配电网参数,显著提高配电网故障定位的速度和精度。
文摘针对工业机械设备实时监测中不可控因素导致的振动信号数据缺失问题,提出一种基于自适应二次临近项交替方向乘子算法(adaptive quadratic proximity-alternating direction method of multipliers, AQ-ADMM)的压缩感知缺失信号重构方法。AQ-ADMM算法在经典交替方向乘子算法算法迭代过程中添加二次临近项,且能够自适应选取惩罚参数。首先在数据中心建立信号参考数据库用于构造初始字典,然后将K-奇异值分解(K-singular value decomposition, K-SVD)字典学习算法和AQ-ADMM算法结合重构缺失信号。对仿真信号和两种真实轴承信号数据集添加高斯白噪声后作为样本,试验结果表明当信号压缩率在50%~70%时,所提方法性能指标明显优于其它传统方法,在重构信号的同时实现了对含缺失数据机械振动信号的快速精确修复。