The flow characteristics of shell-side fluid in the tube-and-shell heat exchangers with trisection helical baffles with 35° inclined angles are numerically analyzed. The secondary flow distribution of the fluid i...The flow characteristics of shell-side fluid in the tube-and-shell heat exchangers with trisection helical baffles with 35° inclined angles are numerically analyzed. The secondary flow distribution of the fluid in the shell-side channel is focused on. The results on meridian planes indicate that in the shell-side channel, the center part of fluid has an outward tendency because of the centrifugal force, and the peripheral region fluid has an inward tendency under the centripetal force. So in a spiral cycle, the fluid is divided into the upper and lower beams of streamlines, at the same time the Dean vortices are formed near the left baffle, and then the fluid turns to centripetal flow near the right baffle. Finally the two beams of streamlines merge in the main flow. The results of a number of parallel slices between two parallel baffles with the same sector in a swirl cycle also show the existence of the secondary flow and some backward flows at the V-gaps of the adjacent baffles. The secondary flows have a positive effect on mixing fluid by promoting the momentum and mass exchange between fluid particles near the tube wall and in the main stream, and thus they will enhance the heat transfer of the helix heat exchanger.展开更多
Spray performance downward the plain orifice injector was numerically simulated by using Fluent. The primary breakup and the secondary breakup were both focused. To capture the instantaneous interface of two-phase flo...Spray performance downward the plain orifice injector was numerically simulated by using Fluent. The primary breakup and the secondary breakup were both focused. To capture the instantaneous interface of two-phase flow and multiscale structure of liquid spray more accurately,an adaptive mesh refinement(AMR) method was adopted. Firstly,the velocity distribution and jet structure were obtained. Then,with different coupled VOF(Volume of Fluid)-DPM(Discrete Phase model)strategies,the jet trajectory,the column breakup point,and the time-average SMD distribution were analyzed and compared. Meanwhile,the experimental data and several empirical formulas were applied to verify the numerical value. The results suggested that the numerical simulation could accord well with experimental data and a certain formula.展开更多
The electrochemical corrosion behavior of Ti(C,N)-based cermets with different Mo2C additions was investigated in freely aerated 10% H2SO4 and potentiodynamic polarization of all the materials was conducted from -0....The electrochemical corrosion behavior of Ti(C,N)-based cermets with different Mo2C additions was investigated in freely aerated 10% H2SO4 and potentiodynamic polarization of all the materials was conducted from -0.5 to 1.5 V. There are two passive regions for all polarization curves. The first should be attributed to passive film formation due to Ti(C,N), while the second may be due to the presence of Ni. Corrosion current density increases with M02C content increasing, from 2.06×10^-3 to 6.70×10^-3 mA/cm2. It is indicated that the corrosion resistance of Ti(C,N)-based cermets decreases with the increase of Mo2C addition. A skeleton of Ti(C,N) gains is observed after dissolution of Ni. The inner rim of cermets, rich in Mo2C, is corroded along with Ni binder and is more serious with the increase of Mo2C content. The secondary carbide Mo2C can be oxidized and dissolved in sulphuric acid.展开更多
基金The National Natural Science Foundation of China (No.50976022)the National Key Technology R&D Program of China during the 11th Five-Year Plan Period (No.2008BAJ12B02)
文摘The flow characteristics of shell-side fluid in the tube-and-shell heat exchangers with trisection helical baffles with 35° inclined angles are numerically analyzed. The secondary flow distribution of the fluid in the shell-side channel is focused on. The results on meridian planes indicate that in the shell-side channel, the center part of fluid has an outward tendency because of the centrifugal force, and the peripheral region fluid has an inward tendency under the centripetal force. So in a spiral cycle, the fluid is divided into the upper and lower beams of streamlines, at the same time the Dean vortices are formed near the left baffle, and then the fluid turns to centripetal flow near the right baffle. Finally the two beams of streamlines merge in the main flow. The results of a number of parallel slices between two parallel baffles with the same sector in a swirl cycle also show the existence of the secondary flow and some backward flows at the V-gaps of the adjacent baffles. The secondary flows have a positive effect on mixing fluid by promoting the momentum and mass exchange between fluid particles near the tube wall and in the main stream, and thus they will enhance the heat transfer of the helix heat exchanger.
基金supported by the National Natural Science Foundation of China(No. 91741118)
文摘Spray performance downward the plain orifice injector was numerically simulated by using Fluent. The primary breakup and the secondary breakup were both focused. To capture the instantaneous interface of two-phase flow and multiscale structure of liquid spray more accurately,an adaptive mesh refinement(AMR) method was adopted. Firstly,the velocity distribution and jet structure were obtained. Then,with different coupled VOF(Volume of Fluid)-DPM(Discrete Phase model)strategies,the jet trajectory,the column breakup point,and the time-average SMD distribution were analyzed and compared. Meanwhile,the experimental data and several empirical formulas were applied to verify the numerical value. The results suggested that the numerical simulation could accord well with experimental data and a certain formula.
基金Project(51074110) supported by the National Natural Science Foundation of ChinaProject(10GGZD080GX-268) supported by Chengdu Science and Technology Program, China
文摘The electrochemical corrosion behavior of Ti(C,N)-based cermets with different Mo2C additions was investigated in freely aerated 10% H2SO4 and potentiodynamic polarization of all the materials was conducted from -0.5 to 1.5 V. There are two passive regions for all polarization curves. The first should be attributed to passive film formation due to Ti(C,N), while the second may be due to the presence of Ni. Corrosion current density increases with M02C content increasing, from 2.06×10^-3 to 6.70×10^-3 mA/cm2. It is indicated that the corrosion resistance of Ti(C,N)-based cermets decreases with the increase of Mo2C addition. A skeleton of Ti(C,N) gains is observed after dissolution of Ni. The inner rim of cermets, rich in Mo2C, is corroded along with Ni binder and is more serious with the increase of Mo2C content. The secondary carbide Mo2C can be oxidized and dissolved in sulphuric acid.