期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
保温时间对二次炭化型煤微结构的影响与力学-渗流特性强化研究
1
作者 甘青青 许江 +2 位作者 彭守建 蔡果良 耿加波 《煤炭科学技术》 EI CAS CSCD 北大核心 2024年第6期111-122,共12页
物理模拟试验是煤矿瓦斯灾害发生机制与防控的一种有效方法。目前开展煤矿瓦斯灾害物理模拟试验所用型煤材料其力学强度、渗透率与原煤差异性较大,如何改善型煤(BC)的抗压强度、渗透率是型煤成型过程中面临的关键问题。基于此,采用热压... 物理模拟试验是煤矿瓦斯灾害发生机制与防控的一种有效方法。目前开展煤矿瓦斯灾害物理模拟试验所用型煤材料其力学强度、渗透率与原煤差异性较大,如何改善型煤(BC)的抗压强度、渗透率是型煤成型过程中面临的关键问题。基于此,采用热压成型方法制作了若干不同保温时间下二次炭化型煤,并采用SEM、NMR、XRD、FTIR、MTS-815岩石力学试验系统和含瓦斯煤热-流-固耦合三轴伺服渗流试验装置对不同保温时间下二次炭化型煤进行测试分析,分析了不同保温时间对其表面形貌、T2谱形态、孔隙度、微晶结构、基本结构单元芳香烃、烷基侧链和各种官能团演化规律,厘清了不同保温时间下二次炭化型煤的力学及渗流特性,并确定最优的保温时间。结果表明:随着保温时间的增加,二次炭化型煤表面粗糙度、孔径逐渐变大,且增至6.7 h后,BC表面有裂隙出现,保温时间越长,裂隙越明显;BC累计孔隙度及中孔孔隙度逐渐增大,而微孔孔隙度逐渐减少;芳香层间距(d_(002))呈先减后增,而微晶直径(L_(a))和微晶高度(L_(c))均先增后减;脂肪链的长度减少,芳香环的缩合程度(A_(ar)/A_(al))呈先增大后减小;单轴抗压强度呈先增大后减小,渗透率呈先减小后增加。在保温时间为5.3 h为最佳保温时间,此时热压BC的单轴抗压强度和弹性模量都最大、泊松比和渗透率最小,其力学强度、渗透率和密度依次为9.85 MPa,1.49×10^(-15)m^(2)和1.127 g/cm^(3)。该研究为提高煤矿瓦斯灾害发生机制与防控基础试验中的真实还原性,有效预防控制煤矿瓦斯灾害事故具有重要的现实指导意义。 展开更多
关键词 煤矿瓦斯灾害 微结构 力学特性 渗流特性 二次炭化型煤
下载PDF
二次炭化型煤成型装置及型煤制作方法 被引量:6
2
作者 许江 甘青青 +2 位作者 蔡果良 王瑞芳 彭守建 《煤炭学报》 EI CAS CSCD 北大核心 2022年第11期4055-4068,共14页
针对煤与瓦斯突出事故研究中物理模拟实验所需型煤材料具有强度低、渗透性高等特性,自主研制了二次炭化型煤热压成型装置和型煤制作新方法。该装置主要由电液伺服加载控制系统、加热炉体及密封系统、真空及气氛保护系统、炉体电控系统... 针对煤与瓦斯突出事故研究中物理模拟实验所需型煤材料具有强度低、渗透性高等特性,自主研制了二次炭化型煤热压成型装置和型煤制作新方法。该装置主要由电液伺服加载控制系统、加热炉体及密封系统、真空及气氛保护系统、炉体电控系统、水冷系统和石墨模具、碳钢模具等6个部分组成,其最大轴压为200 kN、最高温度为1200℃、炉膛温度均匀性为±6℃、升温速率为±0.01~10℃、炉膛使用真空度≤10 Pa、炉膛工作室尺寸为φ240 mm×260 mm(直径×高),石墨模具和碳钢模具均可制备尺寸分别为φ25 mm×50 mm和φ50 mm×100 mm(直径×高)的圆柱体型煤试件。该热压成型装置具有如下特点:①系统采用计算机控制自动加荷载,实现力、位移的闭环控制;②炉膛尺寸设计紧凑、炉内温度均匀性好,能实现热压、无压、真空和气氛保护烧结等;③模具耐高温、热膨胀系数低,组装、拆卸均方便,可成型多种类、多数量热压型煤。并利用该装置进行了不同炭化温度的型煤试件的制作,其中煤粉颗粒配比采用致密堆积理论优化后其粒径为0.250~0.425,0.125~0.150,0.075~0.083 mm,配比为91.775.872.35。基于所开展的单轴压缩荷载作用下的力学特性试验、三轴压缩荷载作用下的渗流特性试验等,通过对比分析热压型煤的密度、单轴抗压强度、泊松比、弹性模量、初始渗透率和最小渗透率等,揭示了不同温度下型煤强度增加与渗透性降低的影响机制。其中密度变化率呈先增后减再增的趋势;单轴抗压强度和弹性模量呈现先增后减,泊松比则为先减后增的趋势;初始渗透率及最小渗透率均呈不断增大的趋势,综合考虑热压型煤的密度、强度和渗透率等,确定了二次炭化型煤制作中最佳炭化温度为300℃,从而优化了型煤与原煤之间的相似性,提高了煤与瓦斯突出物理模拟实验研究真实还原性。 展开更多
关键词 二次炭化型煤 石墨模具 粒径优化 单轴抗压强度 渗透率 煤矿瓦斯灾害
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部