期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
二次聚类与神经网络结合的日光温室温度二步预测方法 被引量:21
1
作者 陈昕 唐湘璐 +3 位作者 李想 刘天麒 贾璐 卢韬 《农业机械学报》 EI CAS CSCD 北大核心 2017年第S1期353-358,共6页
精确预测日光温室温度是实现对温室精准调控的前提。由于温室是复杂非线性系统,受室内外众多环境因素影响,且部分因素难以准确测量和建模,因此,难以通过机理分析建立室外因素精确影响室内温度的物理模型。而现有时间序列分析、人工神经... 精确预测日光温室温度是实现对温室精准调控的前提。由于温室是复杂非线性系统,受室内外众多环境因素影响,且部分因素难以准确测量和建模,因此,难以通过机理分析建立室外因素精确影响室内温度的物理模型。而现有时间序列分析、人工神经网络等仅基于数据的方法预测准确度也较低。本文提出连续时间段聚类与BP神经网络相结合的二步日光温室温度预测方法。首先,进行二次聚类,对室外温度情况相似的日进行聚类,并将全年划分为若干个类似时间段,根据连续时间段内相似日的数量进行聚类,将全年内的连续时间段归入若干类别。其次,对不同类别的时间段,分别采用BP神经网络建立室外温度、相对湿度、太阳辐射、风速和温室室内温度间的关联模型,通过数据训练,能够较为准确的根据室外环境数据预测室内温度。通过涿州实验农场2年数据试验验证,通过二次聚类,全年连续时间段可划分为3类,通过分别建立BP神经网络并分别训练,结果表明本方法预测误差仅为6.23%,与现有未分类的BP神经网络预测算法对比,本文方法有效地提高了准确度,平均误差降低5.4个百分点。 展开更多
关键词 温室 温度预测 二次聚类分析 BP神经网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部