TiO2@Ni(OH)2 core-shell microspheres were synthesized by a facile strategy to obtain a perfect 3D flower-like nanostructure with well-arranged Ni(OH)2 nanoflakes on the surfaces of TiO2 microspheres;this arrangement l...TiO2@Ni(OH)2 core-shell microspheres were synthesized by a facile strategy to obtain a perfect 3D flower-like nanostructure with well-arranged Ni(OH)2 nanoflakes on the surfaces of TiO2 microspheres;this arrangement led to a six-fold enhancement in photocatalytic hydrogen evolution. The unique p-n type heterostructure not only promotes the separation and transfer of photogenerated charge carriers significantly, but also offers more active sites for photocatalytic hydrogen production. A photocatalytic mechanism is proposed based on the results of electrochemical measurements and X-ray photoelectron spectroscopy.展开更多
Depositing a cocatalyst has proven to be an important strategy for improving the photoelectrochemical(PEC)water-splitting efficiency of photoanodes.In this study,Ni(OH)2 quantum dots(Ni(OH)2 QDs)were deposited in situ...Depositing a cocatalyst has proven to be an important strategy for improving the photoelectrochemical(PEC)water-splitting efficiency of photoanodes.In this study,Ni(OH)2 quantum dots(Ni(OH)2 QDs)were deposited in situ onto anα-Fe_(2)O_(3)photoanode via a chelation-mediated hydrolysis method.The photocurrent density of the Ni(OH)2 QDs/α-Fe_(2)O_(3)photoanode reached 1.93 mA·cm^(−2)at 1.23 V vs.RHE,which is 3.5 times that ofα-Fe_(2)O_(3),and an onset potential with a negative shift of ca.100 mV was achieved.More importantly,the Ni(OH)2 QDs exhibited excellent stability in maintaining PEC water oxidation at a high current density,which is attributed to the ultra-small crystalline size,allowing for the rapid acceptance of holes fromα-Fe_(2)O_(3)to Ni(OH)_(2)QDs,formation of active sites for water oxidation,and hole transfer from the active sites to water molecules.Further(photo)electrochemical analysis suggests that Ni(OH)_(2)QDs not only provide maximal active sites for water oxidation but also suppress charge recombination by passivating the surface states ofα-Fe_(2)O_(3),thereby significantly enhancing the water oxidation kinetics over theα-Fe_(2)O_(3)surface.展开更多
Catalytic hydrogenation and hydrocracking of 9,10 diphenylanthracene (9,10 DPA) , used as a coal related model compound, was investigated at a relatively low temperature. The results show that the Fe and Ni mainly cat...Catalytic hydrogenation and hydrocracking of 9,10 diphenylanthracene (9,10 DPA) , used as a coal related model compound, was investigated at a relatively low temperature. The results show that the Fe and Ni mainly catalyze non ipso hydrogenation of 9,10 DPA without sulfur, but selectively promote ipso hydrogenation of 9,10 DPA in the presence of sulfur.展开更多
In this work, the hydrogenation of maleic anhydride to succinic anhydride in the presence of 5 m%Ni/clay catalysts was investigated. These catalysts were characterized by X-ray diffraction (XRD), H2 temperature prog...In this work, the hydrogenation of maleic anhydride to succinic anhydride in the presence of 5 m%Ni/clay catalysts was investigated. These catalysts were characterized by X-ray diffraction (XRD), H2 temperature programmed reduction (TPR) and thermogravimetric analysis (TGA) techniques. The XRD and TPR studies showed that Ni was present as Ni2+ on the support, which indicated that there were no elemental nickel (Ni^0) and Ni203 species in the unreduced samples. Increasing of calcination temperature to 650 ℃ leads to destruction of the support structure observed in TGA, while the catalyst sample calcined at 550 ℃ exhibits better performances than other samples. The ideal conversion of maleic anhydride (97.14%) and selectivity of succinic anhydride (99.55%) were realized at a reaction temperature of 180 ℃ and a weight hourly space velocity of 4 h^-1 under a reaction pressure of 1 MPa.展开更多
基金supported by the National Natural Science Foundation of China(21773031)the Natural Science Foundation of Fujian Province(2018J01686)the State Key Laboratory of Photocatalysis on Energy and Environment(SKLPEE-2017A01 and SKLPEE-2017B02)~~
文摘TiO2@Ni(OH)2 core-shell microspheres were synthesized by a facile strategy to obtain a perfect 3D flower-like nanostructure with well-arranged Ni(OH)2 nanoflakes on the surfaces of TiO2 microspheres;this arrangement led to a six-fold enhancement in photocatalytic hydrogen evolution. The unique p-n type heterostructure not only promotes the separation and transfer of photogenerated charge carriers significantly, but also offers more active sites for photocatalytic hydrogen production. A photocatalytic mechanism is proposed based on the results of electrochemical measurements and X-ray photoelectron spectroscopy.
文摘Depositing a cocatalyst has proven to be an important strategy for improving the photoelectrochemical(PEC)water-splitting efficiency of photoanodes.In this study,Ni(OH)2 quantum dots(Ni(OH)2 QDs)were deposited in situ onto anα-Fe_(2)O_(3)photoanode via a chelation-mediated hydrolysis method.The photocurrent density of the Ni(OH)2 QDs/α-Fe_(2)O_(3)photoanode reached 1.93 mA·cm^(−2)at 1.23 V vs.RHE,which is 3.5 times that ofα-Fe_(2)O_(3),and an onset potential with a negative shift of ca.100 mV was achieved.More importantly,the Ni(OH)2 QDs exhibited excellent stability in maintaining PEC water oxidation at a high current density,which is attributed to the ultra-small crystalline size,allowing for the rapid acceptance of holes fromα-Fe_(2)O_(3)to Ni(OH)_(2)QDs,formation of active sites for water oxidation,and hole transfer from the active sites to water molecules.Further(photo)electrochemical analysis suggests that Ni(OH)_(2)QDs not only provide maximal active sites for water oxidation but also suppress charge recombination by passivating the surface states ofα-Fe_(2)O_(3),thereby significantly enhancing the water oxidation kinetics over theα-Fe_(2)O_(3)surface.
文摘Catalytic hydrogenation and hydrocracking of 9,10 diphenylanthracene (9,10 DPA) , used as a coal related model compound, was investigated at a relatively low temperature. The results show that the Fe and Ni mainly catalyze non ipso hydrogenation of 9,10 DPA without sulfur, but selectively promote ipso hydrogenation of 9,10 DPA in the presence of sulfur.
文摘In this work, the hydrogenation of maleic anhydride to succinic anhydride in the presence of 5 m%Ni/clay catalysts was investigated. These catalysts were characterized by X-ray diffraction (XRD), H2 temperature programmed reduction (TPR) and thermogravimetric analysis (TGA) techniques. The XRD and TPR studies showed that Ni was present as Ni2+ on the support, which indicated that there were no elemental nickel (Ni^0) and Ni203 species in the unreduced samples. Increasing of calcination temperature to 650 ℃ leads to destruction of the support structure observed in TGA, while the catalyst sample calcined at 550 ℃ exhibits better performances than other samples. The ideal conversion of maleic anhydride (97.14%) and selectivity of succinic anhydride (99.55%) were realized at a reaction temperature of 180 ℃ and a weight hourly space velocity of 4 h^-1 under a reaction pressure of 1 MPa.