(7R,8S)-脱氢双松柏醇-4,9-双-O-β-D-吡喃葡萄糖苷是从中药北沙参(Glehnia litto-ralisFr.Schmidt ex Miquel)醇提取物中分离得到的一种苯并二氢呋喃新木脂素苷类化合物.通过化学方法和波谱分析鉴定了该化合物的结构.采用2D NMR技术对...(7R,8S)-脱氢双松柏醇-4,9-双-O-β-D-吡喃葡萄糖苷是从中药北沙参(Glehnia litto-ralisFr.Schmidt ex Miquel)醇提取物中分离得到的一种苯并二氢呋喃新木脂素苷类化合物.通过化学方法和波谱分析鉴定了该化合物的结构.采用2D NMR技术对其1H和13C NMR信号进行了全归属.展开更多
Pt/Au/WO_3 bimetallic catalysts were prepared by impregnation of Pt onto preformed Au/WO_3,obtained by a hexadecyl trmethyl ammonium bromide(CTAB)-assisted one-pot synthesis method.The resulting Pt/Au/WO_3 catalysts...Pt/Au/WO_3 bimetallic catalysts were prepared by impregnation of Pt onto preformed Au/WO_3,obtained by a hexadecyl trmethyl ammonium bromide(CTAB)-assisted one-pot synthesis method.The resulting Pt/Au/WO_3 catalysts exhibited remarkable synergistic effects for selective hydrogenolysis of glycerol to 1,3-propanediol. The characterization results showed that doping of Au promoted the reduction of both Pt and W at low temperatures and uniform dispersion of Pt on the WO_3 support. Furthermore, more low-valence Pt species were produced on the WO_3 surface after introduction of Au. These changes in electronic properties resulted in enhancement of both glycerol conversion and selectivity for 1,3-propanediol.展开更多
In recent years, organic-inorganic hybrid nanocarriers are explored for effective drug delivery and preferable disease treatments. In this study, using 5-fluorouracil(5-FU)as electronegative model drug, a new type of ...In recent years, organic-inorganic hybrid nanocarriers are explored for effective drug delivery and preferable disease treatments. In this study, using 5-fluorouracil(5-FU)as electronegative model drug, a new type of organic-inorganic hybrid drug delivery system(LDH/HA-PEG/5-FU)was conceived and manufactured by the adsorption of PEGylated hyaluronic acid(HA-PEG)on the surface of layered double hydroxide(LDH, prepared via hydrothermal method)and the intercalation of 5-FU in the interlamination of LDH via ion exchange strategy. The drug loading amount of LDH/HA-PEG/5-FU achieved as high as 34.2%. LDH, LDH/5-FU and LDH/HA-PEG/5-FU were characterized by FT-IR, XRD, TGA, laser particle size analyzer and SEM. With the benefit of p Hdegradable feature of LDH and enzyme-degradable feature of HA, LDH/HA-PEG/5-FU showed p H-degradable and enzyme-degradable capacity in in vitro drug release. Moreover, the drug carrier LDH/HA-PEG contained biocompatible PEG and tumor-targeted HA, resulting in lower cytotoxicity and better endocytosis compared with LDH in vitro. It was suggested that the organic-inorganic hybrid drug delivery system, which was endowed with the properties of controlled release, low toxicity and tumor-targeting delivery for ameliorative cancer therapy, was advisable and might be applied further to fulfill other treatments.展开更多
基金supported by the National Natural Science Foundation of China(21690080,21690084,21721004,21673228)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB17020100)the National Key Projects for Fundamental Research and Development of China(2016YFA0202801)~~
文摘Pt/Au/WO_3 bimetallic catalysts were prepared by impregnation of Pt onto preformed Au/WO_3,obtained by a hexadecyl trmethyl ammonium bromide(CTAB)-assisted one-pot synthesis method.The resulting Pt/Au/WO_3 catalysts exhibited remarkable synergistic effects for selective hydrogenolysis of glycerol to 1,3-propanediol. The characterization results showed that doping of Au promoted the reduction of both Pt and W at low temperatures and uniform dispersion of Pt on the WO_3 support. Furthermore, more low-valence Pt species were produced on the WO_3 surface after introduction of Au. These changes in electronic properties resulted in enhancement of both glycerol conversion and selectivity for 1,3-propanediol.
基金Supported by the National Natural Science Foundation of China(No.81371667,No.31271073)
文摘In recent years, organic-inorganic hybrid nanocarriers are explored for effective drug delivery and preferable disease treatments. In this study, using 5-fluorouracil(5-FU)as electronegative model drug, a new type of organic-inorganic hybrid drug delivery system(LDH/HA-PEG/5-FU)was conceived and manufactured by the adsorption of PEGylated hyaluronic acid(HA-PEG)on the surface of layered double hydroxide(LDH, prepared via hydrothermal method)and the intercalation of 5-FU in the interlamination of LDH via ion exchange strategy. The drug loading amount of LDH/HA-PEG/5-FU achieved as high as 34.2%. LDH, LDH/5-FU and LDH/HA-PEG/5-FU were characterized by FT-IR, XRD, TGA, laser particle size analyzer and SEM. With the benefit of p Hdegradable feature of LDH and enzyme-degradable feature of HA, LDH/HA-PEG/5-FU showed p H-degradable and enzyme-degradable capacity in in vitro drug release. Moreover, the drug carrier LDH/HA-PEG contained biocompatible PEG and tumor-targeted HA, resulting in lower cytotoxicity and better endocytosis compared with LDH in vitro. It was suggested that the organic-inorganic hybrid drug delivery system, which was endowed with the properties of controlled release, low toxicity and tumor-targeting delivery for ameliorative cancer therapy, was advisable and might be applied further to fulfill other treatments.