The separation and enrichment of mercury and the recovery of elemental sulfur from flotation sulfur concentrate in zinc pressure leaching process were carried out by sodium sulfide leaching and carbon dioxide precipit...The separation and enrichment of mercury and the recovery of elemental sulfur from flotation sulfur concentrate in zinc pressure leaching process were carried out by sodium sulfide leaching and carbon dioxide precipitating. The results show that the leaching rate of elemental sulfur is more than 98%, and 98.13% of mercury is enriched in the residue, under the optimized conditions of sodium sulfide concentration 1.5 mol/L, liquid/solid ratio 6:1 and leaching time 30 min at room temperature. In addition, the content of mercury is enriched 5.23 times that in the leaching residue. The elemental sulfur is precipitated from leaching solution under conditions of carbon dioxide flow rate 200 mL/min and blowing time 150 min, while solution is stirred adequately. The recovery efficiency of elemental sulfur reaches 97.67%, and the purity of elemental sulfur is 99.75%, meeting the requirements of industrial first-rate product standard according to the national standard of GB/T 2449-2006 (PRC).展开更多
The paper shows a method of designing a heat exchanger recovering heat from the condensation of water vapour contained in flue gases. A heat exchanger condenses water vapour and SO2 (sulphur dioxide) in the presence...The paper shows a method of designing a heat exchanger recovering heat from the condensation of water vapour contained in flue gases. A heat exchanger condenses water vapour and SO2 (sulphur dioxide) in the presence of inert gases (CO2, CO, N2, O2) contained in flue gases. A mathematical model and a sample design of a heat exchanger were presented. The heat exchange is capable of recovering from a dozen or so to several dozen percent of heat from flue gases escaping into the atmosphere. A second advantage of the heat exchanger is the possibility to reduce the emissions of SO2 considerably. Depending on the parameters, it can be even a sevenfold reduction in the emissions. The main mathematical tool used for designing the condensing heat exchanger is the Colburn-Hougen method. The authors omitted that part of the method which requires iterative calculations. The Mollier diagram was used instead.展开更多
文摘The separation and enrichment of mercury and the recovery of elemental sulfur from flotation sulfur concentrate in zinc pressure leaching process were carried out by sodium sulfide leaching and carbon dioxide precipitating. The results show that the leaching rate of elemental sulfur is more than 98%, and 98.13% of mercury is enriched in the residue, under the optimized conditions of sodium sulfide concentration 1.5 mol/L, liquid/solid ratio 6:1 and leaching time 30 min at room temperature. In addition, the content of mercury is enriched 5.23 times that in the leaching residue. The elemental sulfur is precipitated from leaching solution under conditions of carbon dioxide flow rate 200 mL/min and blowing time 150 min, while solution is stirred adequately. The recovery efficiency of elemental sulfur reaches 97.67%, and the purity of elemental sulfur is 99.75%, meeting the requirements of industrial first-rate product standard according to the national standard of GB/T 2449-2006 (PRC).
文摘The paper shows a method of designing a heat exchanger recovering heat from the condensation of water vapour contained in flue gases. A heat exchanger condenses water vapour and SO2 (sulphur dioxide) in the presence of inert gases (CO2, CO, N2, O2) contained in flue gases. A mathematical model and a sample design of a heat exchanger were presented. The heat exchange is capable of recovering from a dozen or so to several dozen percent of heat from flue gases escaping into the atmosphere. A second advantage of the heat exchanger is the possibility to reduce the emissions of SO2 considerably. Depending on the parameters, it can be even a sevenfold reduction in the emissions. The main mathematical tool used for designing the condensing heat exchanger is the Colburn-Hougen method. The authors omitted that part of the method which requires iterative calculations. The Mollier diagram was used instead.