期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
二氧化碳固化树脂砂的研究进展
1
作者 J.G.Morler 刘承尧 王光阀 《铸造》 CAS CSCD 北大核心 1989年第1期41-43,共3页
<正>一、二氧化碳固化树脂砂法的原理英国铸铁研究协会研制了一种新型粘结剂系统,称为POLIDOX,它是以聚丙烯酸钠和石灰基硬化剂为基础,并用二氧化碳气固化。目前,粘结剂系统采用两种组分加入型砂,主要的一种是占砂重2.5~3.5%
关键词 POLIDOX 树脂砂 二氧化碳固化
下载PDF
用聚醚类配体的钛醇盐催化二氧化碳合成碳酸二甲酯
2
作者 周莹杰(译) 《中山大学研究生学刊(自然科学与医学版)》 2009年第1期127-132,共6页
本文致力于研究一种基于钛的复合物的新型催化体系,并对所制备的催化剂进行表征。
关键词 固化二氧化碳 碳酸化合物 均相催化剂 聚醚 钛合物
下载PDF
Effects of long-term elevated CO_2 on N_2-fixing,denitrifying and nitrifying enzyme activities in forest soils under Pinus sylvestriformis in Changbai Mountain 被引量:4
3
作者 郑俊强 韩士杰 +2 位作者 任飞荣 周玉梅 张岩 《Journal of Forestry Research》 SCIE CAS CSCD 2008年第4期283-287,共5页
A study was conducted to determine the effects of elevated CO2 on soil N process at Changbai Mountain in Jilin Province, northeastern China (42°24"N, 128°06"E, and 738 m elevation). A randomized complete... A study was conducted to determine the effects of elevated CO2 on soil N process at Changbai Mountain in Jilin Province, northeastern China (42°24"N, 128°06"E, and 738 m elevation). A randomized complete block design of ambient and elevated CO2 was established in an open-top chamber facility in the spring of 1999. Changpai Scotch pine (Pinus sylvestris var. sylvestriformis seeds were sowed in May, 1999 and CO2 fumigation treatments began after seeds germination. In each year, the exposure started at the end of April and stopped at the end of October. Soil samples were collected in June and August 2006 and in June 2007, and soil nitrifying, denitrifying and N2-fixing enzyme activities were measured. Results show that soil nitrifying enzyme activities (NEA) in the 5-10 cm soil layer were significantly increased at elevated CO2 by 30.3% in June 2006, by 30.9% in August 2006 and by 11.3% in June 2007. Soil denitrifying enzyme activities (DEA) were significantly decreased by elevated CO2 treatment in June 2006 (P 〈 0.012) and August 2006 (P 〈 0.005) samplings in our study; no significant difference was detected in June 2007, and no significant changes in N2-fixing enzyme activity were found. This study suggests that elevated CO2 can alter soil nitrifying enzyme and denitrifying enzyme activities. 展开更多
关键词 elevated CO2 forest soil nitrifying enzyme denitrifying enzyme N2-fixing enzyme
下载PDF
Copper-ceria solid solution with improved catalytic activity for hydrogenation of CO to CHOH 被引量:7
4
作者 Bin Yang Wei Deng +1 位作者 Limin Guo Tatsumi Ishihara 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第9期1348-1359,共12页
A copper-ceria solid solution and ceria-supported copper catalysts were prepared and used for the catalytic hydrogenation of CO2 to CH3OH.According to site-specific classification and quantitative analyses(X-ray diffr... A copper-ceria solid solution and ceria-supported copper catalysts were prepared and used for the catalytic hydrogenation of CO2 to CH3OH.According to site-specific classification and quantitative analyses(X-ray diffraction,Raman spectroscopy,X-ray photoelectron spectroscopy,H2 temperature-programmed reduction,and CO adsorption),the interfaces of the prepared catalysts were classified as Cu incorporated into ceria(Cu-Ov-Cex),dispersed Cu O(D-Cu O-Ce O2),and bulk Cu O(B-Cu O-Ce O2)over the Ce O2 surface.These results,together with those of activity tests,showed that the Cu-Ov-Cex species was closely related to the CO2 hydrogenation activity and resulted in a much higher turnover frequency of CH3OH production than that observed with the D-Cu O-Ce O2 and B-Cu O-Ce O2 species.Thus,the copper-ceria solid solution exhibited improved activity due to the higher Cu-Ov-Cex fraction. 展开更多
关键词 Copper-ceria Solid solution CO2 hydrogenation METHANOL Active site
下载PDF
Artificial bioconversion of carbon dioxide 被引量:5
5
作者 Ting-Ting Zhao Guang-Hui Feng +5 位作者 Wei Chen Yan-Fang Song Xiao Dong Gui-Hua Li Hai-Jiao Zhang Wei Wei 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第10期1421-1437,共17页
CO2 is not only the most important greenhouse gas but also an important resource of elemental carbon and oxygen.From the perspective of resource and energy strategy,the conversion of CO2 to chemicals driven by renewab... CO2 is not only the most important greenhouse gas but also an important resource of elemental carbon and oxygen.From the perspective of resource and energy strategy,the conversion of CO2 to chemicals driven by renewable energy is of significance,since it can not only reduce carbon emission by the utilization of CO2 as feedstock but also store low-grade renewable energy as high energy density chemical energy.Although studies on photoelectrocatalytic reduction of CO2 using renewable energy are increasing,artificial bioconversion of CO2 as an important novel pathway to synthesize chemicals has attracted more and more attention.By simulating the natural photosynthesis process of plants and microorganisms,the artificial bioconversion of CO2 can efficiently synthesize chemicals via a designed and constructed artificial photosynthesis system.This review focuses on the recent advancements in artificial bioreduction of CO2,including the key techniques,and artificial biosynthesis of compounds with different carbon numbers.On the basis of the aforementioned discussions,we present the prospects for further development of artificial bioconversion of CO2 to chemicals. 展开更多
关键词 Carbon dioxide Artificial bioconversion Solar energy Carbon fixation Chemical compound
下载PDF
MXenes as noble-metal-alternative co-catalysts in photocatalysis 被引量:8
6
作者 Kaining Li Sushu Zhang +2 位作者 Yuhan Li Jiajie Fan Kangle Lv 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第1期3-14,共12页
Photocatalysis has become a focal point in research as a clean and sustainable technology with the potential to solve environmental problems and energy crises.The loading of noble-metal co-catalysts can substantially ... Photocatalysis has become a focal point in research as a clean and sustainable technology with the potential to solve environmental problems and energy crises.The loading of noble-metal co-catalysts can substantially improve the photocatalytic efficiency of semiconductors.Because the high cost and scarcity of noble metals markedly limit their large-scale applications,finding a noble-metal-alternative co-catalyst is crucial.MXene,a novel 2D transition metal material,has attracted considerable attention as a promising substitute for noble metal co-catalysts owing to its cost-efficiency,unique 2D layered structure,and excellent electrical,optical,and thermodynamic properties.This review focuses on the latest advancements in research on MXenes as co-catalysts in relatively popular photocatalytic applications(hydrogen production,CO2 reduction,nitrogen fixation,and organic pollutant oxidation).The synthesis methods and photocatalytic mechanisms of MXenes as co-catalysts are also summarized according to the type of MXene-based material.Finally,the crucial opportunities and challenges in the prospective development of MXene-based photocatalysts are outlined.We emphasize that modern techniques should be used to demonstrate the effects of MXenes on photocatalysis and that the photocatalytic activity of MXene-based photocatalysts can be further improved using defective engineering and recent phenomena such as the localized surface plasmon resonance effect and single-atom catalysis. 展开更多
关键词 MXenes Photocatalytic degradation Hydrogen production CO2 reduction Nitrogen fixation
下载PDF
Recent advances and perspectives in cobalt‐based heterogeneous catalysts for photocatalytic water splitting,CO_(2) reduction,and N_(2) fixation 被引量:2
7
作者 Wanjun Sun Jiayu Zhu +5 位作者 Meiyu Zhang Xiangyu Meng Mengxue Chen Yu Feng Xinlong Chen Yong Ding 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第9期2273-2300,共28页
Solar‐driven conversion of carbon dioxide,water and nitrogen into high value‐added fuels(e.g.H_(2),CO,CH_(4),CH_(3)OH,NH_(3) and so on)is regarded as an environmental‐friendly and ideal route for relieving the gree... Solar‐driven conversion of carbon dioxide,water and nitrogen into high value‐added fuels(e.g.H_(2),CO,CH_(4),CH_(3)OH,NH_(3) and so on)is regarded as an environmental‐friendly and ideal route for relieving the greenhouse gas effect and countering energy crisis,which is an attractive and challenging topic.Hence,various types of photocatalysts have been developed successively to meet the requirements of these photocatalysis.Among them,cobalt‐based heterogeneous catalysts emerge as one of the most promising photocatalysts that open up alluring vistas in the field of solar‐to‐fuels conversion,which can effectively enhance photocatalytic efficiency by extending light absorption range,promoting charge separation,providing active sites,and lowering reaction barrier.In this review,we first present the working principles of cobalt‐based heterogeneous catalysts for photocatalytic water splitting,CO_(2) reduction,and N_(2) fixation.Second,five efficient strategies including surface modification,morphology modulation,crystallinity controlling,crystal engineering and doping,are discussed for improving the photocatalytic performance with different types cobalt‐based catalysts(cobalt nanoparticles and single atom,oxides,sulfides,phosphides,MOFs,COFs,LDHs,carbide,and nitrides).Third,we outline the applications for the state‐of‐the‐art photocatalytic CO_(2) reduction and water splitting,and nitrogen fixation over cobalt‐based heterogeneous catalysts.Finally,the central challenges and possible improvements of cobalt‐based photocatalysis in the future are presented.The purpose of this review is to summarize the past experience and lessons,and provide reference for the further development of cobalt‐based photocatalysis technology. 展开更多
关键词 PHOTOCATALYSIS Cobalt based heterogeneous catalyst Water splitting Carbon dioxide reduction Nitrogen fixation
下载PDF
Chiral basket-handle porphyrin-Co complexes for the catalyzed asymmetric cycloaddition of CO_2 to epoxides 被引量:1
8
作者 Xiying Fu Xinyao Jing +4 位作者 Lili Jin Lilong Zhang Xiaofeng Zhang Bin Hu Huanwang Jing 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第5期997-1003,共7页
The catalytic synthesis of cyclic carbonates via the cycloaddition of CO2 to epoxides is a standard methodology for CO2 fixation.For this purpose,chiral basket-handle porphyrin-Co complexes were devised,prepared,and f... The catalytic synthesis of cyclic carbonates via the cycloaddition of CO2 to epoxides is a standard methodology for CO2 fixation.For this purpose,chiral basket-handle porphyrin-Co complexes were devised,prepared,and fully characterized by nuclear magnetic resonance,mass spectrometry,Fourier transform infrared spectroscopy,ultraviolet-visible spectroscopy,and specific rotation.The proposed metalloporphyrin catalysts were synthesized with either 1,1'-bi-2-naphthol or L-phenylalanine,which have different chirality,and then applied to the coupling of propylene oxide and CO2 for generating chiral cyclic carbonates with good enantioselectivity under extremely mild conditions in the presence of tetrabutyl ammonium chloride as a co-catalyst.The good enantioselectivity in the cycloaddition reaction is attributed to a synergistic interplay between the chiral porphyrin catalysts and the substrate.The mechanism and enantioselectivity of the asymmetric cycloaddition reaction is discussed. 展开更多
关键词 Carbon dioxide fixation Chiral resolution CYCLOADDITION EPOXIDE Chiral porphyrin-cobalt complex
下载PDF
Microbial processes and factors controlling their activities in alkaline lakes of the Mongolian plateau
9
作者 Zorigto B.NAMSARAEV Svetlana V.ZAITSEVA +2 位作者 Vladimir M.GORLENKO Ludmila P.KOZYREVA Bair B.NAMSARAEV 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2015年第6期1391-1401,共11页
A striking feature of the Mongolian plateau is the wide range of air temperatures during a year, -30 to 30~C. High summer temperatures, atmospheric weathering and the arid climate lead to formation of numerous alkalin... A striking feature of the Mongolian plateau is the wide range of air temperatures during a year, -30 to 30~C. High summer temperatures, atmospheric weathering and the arid climate lead to formation of numerous alkaline soda lakes that are covered by ice during 6-7 months per year. During the study period, the lakes had pH values between 8.1 to 10.4 and salinity between 1.8 and 360 g/L. According to chemical composition, the lakes belong to sodium carbonate, sodium chloride-carbonate and sodium sulfate-carbonate types. This paper presents the data on the water chemical composition, results of the determination of the rates of microbial processes in microbial mats and sediments in the lakes studied, and the results of a Principal Component Analysis of environmental variables and microbial activity data. Temperature was the most important factor that influenced both chemical composition and microbial activity, pH and salinity are also important factors for the microbial processes. Dark CO2 fixation is impacted mostly by salinity and the chemical composition of the lake water. Total photosynthesis and sulfate-reduction are impacted mostly by pH. Photosynthesis is the dominant process of primary production, but the highest rate (386 mg C/(L.d)) determined in the lakes studied were 2-3 times lower than in microbial mats of lakes located in tropical zones. This can be explained by the relatively short warm period that lasts only 3-4 months per year. The highest measured rate of dark CO2 assimilation (59.8 mg C/(L·d)) was much lower than photosynthesis. The highest rate of sulfate reduction was 60 mg S/(L·d), while that of methanogenesis was 75.6 μL CH4/(L·d) in the alkaline lakes of Mongolian plateau. The rate of organic matter consumption during sulfate reduction was 3-4 orders of magnitude higher than that associated with methanogenesis. 展开更多
关键词 alkaline lakes microbial mats Mongolian plateau biogeochemical cycles
下载PDF
Correlation Between CO_2 Efflux and Net Nitrogen Mineralization and Its Response to External C or N Supply in an Alpine Meadow Soil 被引量:9
10
作者 SONG Ming-Hua JIANG Jing +1 位作者 XU Xing-Liang SHI Pei-Li 《Pedosphere》 SCIE CAS CSCD 2011年第5期666-675,共10页
In nutrient-limited alpine meadows,nitrogen(N) mineralization is prior to soil microbial immobilization;therefore,increased mineral N supply would be most likely immobilized by soil microbes due to nutrient shortage i... In nutrient-limited alpine meadows,nitrogen(N) mineralization is prior to soil microbial immobilization;therefore,increased mineral N supply would be most likely immobilized by soil microbes due to nutrient shortage in alpine soils.In addition,low temperature in alpine meadows might be one of the primary factors limiting soil organic matter decomposition and thus N mineralization.A laboratory incubation experiment was performed using an alpine meadow soil from the Tibetan Plateau.Two levels of NH4NO3(N) or glucose(C) were added,with a blank without addition of C or N as the control,before incubation at 5,15,or 25 ℃ for 28 d.CO2 efflux was measured during the 28-d incubation,and the mineral N was measured at the beginning and end of the incubation,in order to test two hypotheses:1) net N mineralization is negatively correlated with CO2 efflux for the control and 2) the external labile N or C supply will shift the negative correlation to positive.The results showed a negative correlation between CO2 efflux and net N immobilization in the control.External inorganic N supply did not change the negative correlation.The external labile C supply shifted the linear correlation from negative to positive under the low C addition level.However,under the high C level,no correlation was found.These suggested that the correlation of CO2 efflux to net N mineralization strongly depend on soil labile C and C:N ratio regardless of temperatures.Further research should focus on the effects of the types and the amount of litter components on interactions of C and N during soil organic matter decomposition. 展开更多
关键词 C:N ratio inorganic N labile C organic matter temperature
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部