针对海藻酸钙水凝胶空心纤维拉伸性能较差、应用受到限制的缺点,通过添加二氧化硅形成纳米复合水凝胶来提高其拉伸性能。研究发现,随着添加二氧化硅浓度的增加,水凝胶的拉伸性能呈现先增加再降低的趋势,其饱和浓度为3%。此时,凝胶的拉...针对海藻酸钙水凝胶空心纤维拉伸性能较差、应用受到限制的缺点,通过添加二氧化硅形成纳米复合水凝胶来提高其拉伸性能。研究发现,随着添加二氧化硅浓度的增加,水凝胶的拉伸性能呈现先增加再降低的趋势,其饱和浓度为3%。此时,凝胶的拉伸强度达到最大值,为444 k Pa。与未添加二氧化硅的凝胶相比,拉伸强度和断裂伸长率分别提高了600%和23%。采用该条件通过微流控方法一步制备了二氧化硅纳米复合水凝胶的中空微纤维,应用光学显微镜和扫描电子显微镜对其空心结构进行了表征。同时应用傅立叶变换红外光谱对其分子结构进行了分析。最后,考察了编织方法对凝胶纤维拉伸性能改善的效果。展开更多
SiO2 in calcium aluminate slag exists in the form of γ-2CaO·SiO2 which is more stable than β-2CaO·SiO2. However, it is decomposed by sodium carbonate solution during leaching process, leading to the second...SiO2 in calcium aluminate slag exists in the form of γ-2CaO·SiO2 which is more stable than β-2CaO·SiO2. However, it is decomposed by sodium carbonate solution during leaching process, leading to the secondary reaction. The extent of secondary reaction and reaction mechanism of calcium aluminate slag were studied using XRD. The results show that the decomposition rate of γ-2CaO·SiO2 increases with the increase in leaching time and sodium carbonate concentration. The main products of secondary reaction are the mixture of hydrogarnet and sodium hydrate alumina-silicate. SiO2 concentration rises firstly and then drops with the increase of leaching temperature. XRD results indicate that the stable product of secondary reaction at low temperature is hydrogarnet. But hydrogarnet is transformed into sodium hydrate alumina-silicate at high temperature.展开更多
Four kinds of Ca-based sorbents were prepared by calcination and hydration reactions using different precursors: calcium hydroxide, calcium carbonate, calcium acetate monohydrate and calcium oxide. The CO2 absorption...Four kinds of Ca-based sorbents were prepared by calcination and hydration reactions using different precursors: calcium hydroxide, calcium carbonate, calcium acetate monohydrate and calcium oxide. The CO2 absorption capacity of those sorbents was investigated in a fixed-bed reactor in the temperature range of 350-650 ℃. It was found that all of those sorbents showed higher capacity for CO2 absorption when the operating temperature higher than 450 ℃. The CaAc2-CaO sorbent showed the highest CO2 absorption capacity of 299 mg.g-1. The mor- phology of those sorbents was examined by scanning electron microscope (SEM), and the changes of composition before and after carbonation were also determined by X-ray diffraction (XRD). Results indicated that those sorbents have the similar chemical compositions and crystalline phases before carbonation reaction [mainly Ca(OH)2], and CaCO3 is the main component after carbonation reaction. The SEM morphology shows clearly that the sorbent pores were filled with reaction products after carbonation reaction, and became much denser than before. The N2 adsorption-desorption isotherms indicated that the CaAc2-CaO and CaCO3-CaO sorbents have higher specific surface area. lar2er oore volume and anoropriate pore size distribution than that of CaO-CaO and Ca(OH)2-CaO.展开更多
Objective To reduce the toxicity and side effects of arsenic trioxide(ATO)and provide a new approach for the treatment of primary liver cancer,a folic acid-modified calcium arsenite liposomal“target-controlled”drug ...Objective To reduce the toxicity and side effects of arsenic trioxide(ATO)and provide a new approach for the treatment of primary liver cancer,a folic acid-modified calcium arsenite liposomal“target-controlled”drug delivery system(FA-LP-CaAs)was fabricated using the reverse microemulsion method.Methods A Malvern particle size analyzer and a transmission electron microscope were employed to determine the particle size,distribution,zeta potential and morphology of FA-LP-CaAs.Further,inductively coupled plasma emission spectrometry was employed to determine the drug loading capacity,entrapment efficiency,and in vitro release behavior of FA-LP-CaAs.To determine its toxicity in human hepatoma cells(HepG2)and human normal hepatocytes(LO2)and its effect on HepG2 cell cycle and apoptosis,the MTT method was used.Laser confocal and flow cytometry were also employed to determine the uptake of FA-LP-CaAs by cells.After establishing a mouse liver cancer model,the in vivo distribution of the drug included in the formulation was investigated using in vivo fluorescence.To evaluate the liver cancer targeting and anti-tumor effects of FALP-CaAs in vivo,the distribution of ATO in tissues and changes in tumor volume and body weight after liposomal administration were investigated using hematoxylin-eosin(HE)-stained tumor sections.Results The particle size,zeta potential and PDI of FA-LP-CaAs were(122.67±2.18)nm,(12.81±0.75)mV and 0.22±0.01,respectively,while its drug loading capacity was 18.49%±1.14%.In vitro experimental results revealed that FA-LP-CaAs had a strong killing effect on HepG2 cells.Further,the cell uptake capacity of this formulation was found to improve.Based on in vivo assessments,FA-LP-CaAs could significantly increase the distribution of ATO in tumor sites and inhibit tumor growth.Conclusions Herein,an FA-LP-CaAs formulation was successfully fabricated.This liposomal drug delivery system had a round appearance,uniform particle size,good polydispersity coefficient,evident“core-shell”structure,high drug loading capacity and pH response,tumor targeted drug delivery and sustained drug release.These findings support further research and the application of ATO as an anti-liver cancer prodrug and provide a new method for the treatment of liver cancer.展开更多
A strain of hydrogen producing bacteria was immobilized by polyvinyl alcohol-boric acid method, with the addition of a small amount of calcium alginate. The immobilized cells were insensitive to the presence of traces...A strain of hydrogen producing bacteria was immobilized by polyvinyl alcohol-boric acid method, with the addition of a small amount of calcium alginate. The immobilized cells were insensitive to the presence of traces of O2. Moreover, the immobilized cells increased both the evolution rate and the yield of hydrogen production. Batch experiments with a medium containing 10 g/L glucose demonstrated the yields of hydrogen production by the immobilized and free cells were 2.14 mol/mol glucose and 1.69 mol/mol glucose, respectively. In continuous cultures at medium retention time of 2.0 h, the yield and the evolution rate of hydrogen production by the immobilized cells were 2.31 mol/mol glucose and 1 435.4 ml/(L·h) respectively. However, at medium retention time of 6.0 h, the yield and the evolution rate of hydrogen production by free cells were only 1.75 mol/mol glucose and 362.9 ml/(L·h), respectively.展开更多
In this paper, lab scale production carried out of calcium carbonate in 400 mL open cylindrical beaker reactor following fuzzy logic approach is reported. 10 grams of Calcium hydroxide is mixed in 250 mL deionized wat...In this paper, lab scale production carried out of calcium carbonate in 400 mL open cylindrical beaker reactor following fuzzy logic approach is reported. 10 grams of Calcium hydroxide is mixed in 250 mL deionized water. Continuous jet supply of carbon dioxide is maintained at controlled flow rate. Reaction histories are noted for different reaction temperatures. Continuous constant magnetic stirring is applied to maintain homogeneity. The data obtained is fuzzified by constructing universe of discourse of temperature, reaction time, and amounts of reactants with reaction conversion. Rule based model is tabulated and results show that fuzzy logic approach is promising to set on data to plan and scale up the process. It is also found that a jump can not be made at this time with few studies of fuzzy logic applications to physiochemical processes unless otherwise amassing and storing up plentiful deduced explorations.展开更多
Structural and compositional transitions of Datong coal ash and its CaCO3 additional effects were carefully exam- ined at a temperature range of 300 to 1 600℃ by using XRD and solid state NMR. The quantitative estima...Structural and compositional transitions of Datong coal ash and its CaCO3 additional effects were carefully exam- ined at a temperature range of 300 to 1 600℃ by using XRD and solid state NMR. The quantitative estimation of amorphous structures of ashes can be successfully obtained through the analyses of solid state NMR spectra. Viscosity of molten ash and its changes with CaCO3 addition were also evaluated up to 1 700 ℃ by using a rotary type viscometer. Glasses with poor crystalline and amorphous phase were continuously formed through the eutectic reaction of silica above fusing temperature (FT〉1 500 ℃) that caused broadening and shift of 29Si and 27A1 peaks in NMR results. With the additional amount of CaCO3 increasing, the peaks shifted to downfield obviously; the fraction of Si(OA1)0(OSi)4 decreased, while that of Si(OA1)l(OSi)l at 84.3 x 10-6 increased apparently. These transitions indicated the destruction of large alumina-silicate framework into small segments by the addition of Ca ion.展开更多
Microcellular injection molding of neat isotactic polypropylene(iPP) and isotactic polypropylene/nano-calcium carbonate composites(i PP/nano-CaCO_3) was performed using supercritical carbon dioxide as the physical blo...Microcellular injection molding of neat isotactic polypropylene(iPP) and isotactic polypropylene/nano-calcium carbonate composites(i PP/nano-CaCO_3) was performed using supercritical carbon dioxide as the physical blowing agent. The influences of filler content and operating conditions on microstructure morphology of i PP and i PP/nano-CaCO_3 microcellular samples were studied systematically. The results showed the bubble size of the microcellular samples could be effectively decreased while the cell density increased for i PP/nano-CaCO_3 composites, especially at high CO_2 concentration and back pressure, low mold temperature and injection speed, and high filler content. Then Moldex 3D was applied to simulate the microcellular injection molding process, with the application of the measured ScCO_2 solubility and diffusion data for i PP and i PP/nano-Ca CO_3 composites respectively. For neat i PP, the simulated bubble size and density distribution in the center section of tensile bars showed a good agreement with the experimental values. However, for i PP/nano-CaCO_3 composites, the correction factor for nucleation activation energy F and the pre-exponential factor of nucleation rate f_0 were obtained by nonlinear regression on the experimental bubble size and density distribution. The parameters F and f_0 can be used to predict the microcellular injection molding process for i PP/nano-CaCO_3 composites by Moldex 3D.展开更多
In recent years,magnetic fields have been widely applied in catalysis to increase the performance of electrocatalysis,photocatalysis,and thermocatalysis through an important noncontact way.This work demonstrated that ...In recent years,magnetic fields have been widely applied in catalysis to increase the performance of electrocatalysis,photocatalysis,and thermocatalysis through an important noncontact way.This work demonstrated that doping CsPbCl_(3) halide perovskite nanocrystals with nickel ions(Ni2+)and applying an external magnetic field can significantly enhance the performance of the photocatalytic carbon dioxide reduction reaction(CO_(2)RR).Compared with its counterpart,Ni-doped CsPbCl_(3) exhibits a sixfold increase in CO_(2)RR efficiency under a 500 mT magnetic field.Insights into the mechanism of this enhancement effect were obtained through photogenerated current density measurements and X-ray magnetic circular dichroism.The results illustrate that the significant enhancement in catalytic performance by the magnetic field is attributed to the synergistic effects of magnetic element doping and the external magnetic field,leading to reduced electron‒hole recombination and extended carrier lifetimes.This study provides an effective strategy for enhancing the efficiency of the photocatalytic CO_(2)RR by manipulating spin-polarized electrons in photocatalytic semiconductors via a noncontact external magnetic field.展开更多
Rising atmospheric CO2 and warming of the global climate that have occurred since the industrial revolution are regarded as fatal threats to coral reefs. We analyzed the skeletal calcification rate of 14 massive Porit...Rising atmospheric CO2 and warming of the global climate that have occurred since the industrial revolution are regarded as fatal threats to coral reefs. We analyzed the skeletal calcification rate of 14 massive Porites corals from the Meiji Reef in the southern South China Sea through X-ray photography of coral skeletons. A general pattern of change in coral skeletal calcifi- cation was determined. The change pattern of coral calcification on the Meiji Reef over the past two centuries can be divided into five periods: calcification increase in 1770-1830, 1870-1920, and 1980-2000 and calcification decline in 1830-1870 and 1920-1980. Over the past two centuries, the largest increase in calcification was 4.5%, occurring in 1770-1830, whereas the largest decline in calcification was 6.2%, occurring in 1920-1980. Coral calcification slightly increased in the recent 20 years (1980-2000). The response relationship of coral calcification to atmospheric CO2 and sea surface temperature (SST) shows that calcification was not correlated with atmospheric CO2 but responded nonlinearly to SST with maxima at ~27.2~C in 1900-2000. On the Meiji Reef, increasing atmospheric CO2 had a negligible effect on coral growth in the past century. How- ever, rising SST improved coral growth in the early and middle 20th century, and restricted coral growth in the recent 20 years.展开更多
文摘针对海藻酸钙水凝胶空心纤维拉伸性能较差、应用受到限制的缺点,通过添加二氧化硅形成纳米复合水凝胶来提高其拉伸性能。研究发现,随着添加二氧化硅浓度的增加,水凝胶的拉伸性能呈现先增加再降低的趋势,其饱和浓度为3%。此时,凝胶的拉伸强度达到最大值,为444 k Pa。与未添加二氧化硅的凝胶相比,拉伸强度和断裂伸长率分别提高了600%和23%。采用该条件通过微流控方法一步制备了二氧化硅纳米复合水凝胶的中空微纤维,应用光学显微镜和扫描电子显微镜对其空心结构进行了表征。同时应用傅立叶变换红外光谱对其分子结构进行了分析。最后,考察了编织方法对凝胶纤维拉伸性能改善的效果。
基金Project(51104053)supported by the National Natural Science Foundation of ChinaProject(E2012208047)supported by the Natural Science Foundation of Hebei Province,China
文摘SiO2 in calcium aluminate slag exists in the form of γ-2CaO·SiO2 which is more stable than β-2CaO·SiO2. However, it is decomposed by sodium carbonate solution during leaching process, leading to the secondary reaction. The extent of secondary reaction and reaction mechanism of calcium aluminate slag were studied using XRD. The results show that the decomposition rate of γ-2CaO·SiO2 increases with the increase in leaching time and sodium carbonate concentration. The main products of secondary reaction are the mixture of hydrogarnet and sodium hydrate alumina-silicate. SiO2 concentration rises firstly and then drops with the increase of leaching temperature. XRD results indicate that the stable product of secondary reaction at low temperature is hydrogarnet. But hydrogarnet is transformed into sodium hydrate alumina-silicate at high temperature.
基金Supported by the National Natural Science Foundation of China (21006053), the Fundamental Research Funds for the Central Universities (65010551) and Special Projects of Environmental Protection (2009ZX07208).
文摘Four kinds of Ca-based sorbents were prepared by calcination and hydration reactions using different precursors: calcium hydroxide, calcium carbonate, calcium acetate monohydrate and calcium oxide. The CO2 absorption capacity of those sorbents was investigated in a fixed-bed reactor in the temperature range of 350-650 ℃. It was found that all of those sorbents showed higher capacity for CO2 absorption when the operating temperature higher than 450 ℃. The CaAc2-CaO sorbent showed the highest CO2 absorption capacity of 299 mg.g-1. The mor- phology of those sorbents was examined by scanning electron microscope (SEM), and the changes of composition before and after carbonation were also determined by X-ray diffraction (XRD). Results indicated that those sorbents have the similar chemical compositions and crystalline phases before carbonation reaction [mainly Ca(OH)2], and CaCO3 is the main component after carbonation reaction. The SEM morphology shows clearly that the sorbent pores were filled with reaction products after carbonation reaction, and became much denser than before. The N2 adsorption-desorption isotherms indicated that the CaAc2-CaO and CaCO3-CaO sorbents have higher specific surface area. lar2er oore volume and anoropriate pore size distribution than that of CaO-CaO and Ca(OH)2-CaO.
基金funding support from the National Natural Science Foundation of China (No. 81873014)。
文摘Objective To reduce the toxicity and side effects of arsenic trioxide(ATO)and provide a new approach for the treatment of primary liver cancer,a folic acid-modified calcium arsenite liposomal“target-controlled”drug delivery system(FA-LP-CaAs)was fabricated using the reverse microemulsion method.Methods A Malvern particle size analyzer and a transmission electron microscope were employed to determine the particle size,distribution,zeta potential and morphology of FA-LP-CaAs.Further,inductively coupled plasma emission spectrometry was employed to determine the drug loading capacity,entrapment efficiency,and in vitro release behavior of FA-LP-CaAs.To determine its toxicity in human hepatoma cells(HepG2)and human normal hepatocytes(LO2)and its effect on HepG2 cell cycle and apoptosis,the MTT method was used.Laser confocal and flow cytometry were also employed to determine the uptake of FA-LP-CaAs by cells.After establishing a mouse liver cancer model,the in vivo distribution of the drug included in the formulation was investigated using in vivo fluorescence.To evaluate the liver cancer targeting and anti-tumor effects of FALP-CaAs in vivo,the distribution of ATO in tissues and changes in tumor volume and body weight after liposomal administration were investigated using hematoxylin-eosin(HE)-stained tumor sections.Results The particle size,zeta potential and PDI of FA-LP-CaAs were(122.67±2.18)nm,(12.81±0.75)mV and 0.22±0.01,respectively,while its drug loading capacity was 18.49%±1.14%.In vitro experimental results revealed that FA-LP-CaAs had a strong killing effect on HepG2 cells.Further,the cell uptake capacity of this formulation was found to improve.Based on in vivo assessments,FA-LP-CaAs could significantly increase the distribution of ATO in tumor sites and inhibit tumor growth.Conclusions Herein,an FA-LP-CaAs formulation was successfully fabricated.This liposomal drug delivery system had a round appearance,uniform particle size,good polydispersity coefficient,evident“core-shell”structure,high drug loading capacity and pH response,tumor targeted drug delivery and sustained drug release.These findings support further research and the application of ATO as an anti-liver cancer prodrug and provide a new method for the treatment of liver cancer.
文摘A strain of hydrogen producing bacteria was immobilized by polyvinyl alcohol-boric acid method, with the addition of a small amount of calcium alginate. The immobilized cells were insensitive to the presence of traces of O2. Moreover, the immobilized cells increased both the evolution rate and the yield of hydrogen production. Batch experiments with a medium containing 10 g/L glucose demonstrated the yields of hydrogen production by the immobilized and free cells were 2.14 mol/mol glucose and 1.69 mol/mol glucose, respectively. In continuous cultures at medium retention time of 2.0 h, the yield and the evolution rate of hydrogen production by the immobilized cells were 2.31 mol/mol glucose and 1 435.4 ml/(L·h) respectively. However, at medium retention time of 6.0 h, the yield and the evolution rate of hydrogen production by free cells were only 1.75 mol/mol glucose and 362.9 ml/(L·h), respectively.
文摘In this paper, lab scale production carried out of calcium carbonate in 400 mL open cylindrical beaker reactor following fuzzy logic approach is reported. 10 grams of Calcium hydroxide is mixed in 250 mL deionized water. Continuous jet supply of carbon dioxide is maintained at controlled flow rate. Reaction histories are noted for different reaction temperatures. Continuous constant magnetic stirring is applied to maintain homogeneity. The data obtained is fuzzified by constructing universe of discourse of temperature, reaction time, and amounts of reactants with reaction conversion. Rule based model is tabulated and results show that fuzzy logic approach is promising to set on data to plan and scale up the process. It is also found that a jump can not be made at this time with few studies of fuzzy logic applications to physiochemical processes unless otherwise amassing and storing up plentiful deduced explorations.
文摘Structural and compositional transitions of Datong coal ash and its CaCO3 additional effects were carefully exam- ined at a temperature range of 300 to 1 600℃ by using XRD and solid state NMR. The quantitative estimation of amorphous structures of ashes can be successfully obtained through the analyses of solid state NMR spectra. Viscosity of molten ash and its changes with CaCO3 addition were also evaluated up to 1 700 ℃ by using a rotary type viscometer. Glasses with poor crystalline and amorphous phase were continuously formed through the eutectic reaction of silica above fusing temperature (FT〉1 500 ℃) that caused broadening and shift of 29Si and 27A1 peaks in NMR results. With the additional amount of CaCO3 increasing, the peaks shifted to downfield obviously; the fraction of Si(OA1)0(OSi)4 decreased, while that of Si(OA1)l(OSi)l at 84.3 x 10-6 increased apparently. These transitions indicated the destruction of large alumina-silicate framework into small segments by the addition of Ca ion.
基金Supported by the National High Technology Research and Development Program of China(2012AA040211)the National Natural Science Foundation of China(21306043)+2 种基金the Research Fund for the Doctoral Program of Higher Education of China(2012007412001920130074110013)the Fundamental Research Funds for the Central Universities
文摘Microcellular injection molding of neat isotactic polypropylene(iPP) and isotactic polypropylene/nano-calcium carbonate composites(i PP/nano-CaCO_3) was performed using supercritical carbon dioxide as the physical blowing agent. The influences of filler content and operating conditions on microstructure morphology of i PP and i PP/nano-CaCO_3 microcellular samples were studied systematically. The results showed the bubble size of the microcellular samples could be effectively decreased while the cell density increased for i PP/nano-CaCO_3 composites, especially at high CO_2 concentration and back pressure, low mold temperature and injection speed, and high filler content. Then Moldex 3D was applied to simulate the microcellular injection molding process, with the application of the measured ScCO_2 solubility and diffusion data for i PP and i PP/nano-Ca CO_3 composites respectively. For neat i PP, the simulated bubble size and density distribution in the center section of tensile bars showed a good agreement with the experimental values. However, for i PP/nano-CaCO_3 composites, the correction factor for nucleation activation energy F and the pre-exponential factor of nucleation rate f_0 were obtained by nonlinear regression on the experimental bubble size and density distribution. The parameters F and f_0 can be used to predict the microcellular injection molding process for i PP/nano-CaCO_3 composites by Moldex 3D.
基金supported by the National Key R&D Program of China(2021YFA1501003)the Joint Funds of the National Natural Science Foundation of China(U23A2081)+5 种基金the National Natural Science Foundation of China(92261105,22221003)the Anhui Provincial Key Research and Development Project(2023z04020010,2022a05020053)the Anhui Provincial Natural Science Foundation(2108085UD06,2208085UD04)the USTC Research Funds of the Double First Class Initiative(YD2060002029,YD2060006005)the Fundamental Research Funds for the Central Universities(WK2060000004,WK2060000021,WK2060000025,WK9990000155)the Joint Funds from Hefei National Synchrotron Radiation Laboratory(KY2060000180,KY2060000195).
文摘In recent years,magnetic fields have been widely applied in catalysis to increase the performance of electrocatalysis,photocatalysis,and thermocatalysis through an important noncontact way.This work demonstrated that doping CsPbCl_(3) halide perovskite nanocrystals with nickel ions(Ni2+)and applying an external magnetic field can significantly enhance the performance of the photocatalytic carbon dioxide reduction reaction(CO_(2)RR).Compared with its counterpart,Ni-doped CsPbCl_(3) exhibits a sixfold increase in CO_(2)RR efficiency under a 500 mT magnetic field.Insights into the mechanism of this enhancement effect were obtained through photogenerated current density measurements and X-ray magnetic circular dichroism.The results illustrate that the significant enhancement in catalytic performance by the magnetic field is attributed to the synergistic effects of magnetic element doping and the external magnetic field,leading to reduced electron‒hole recombination and extended carrier lifetimes.This study provides an effective strategy for enhancing the efficiency of the photocatalytic CO_(2)RR by manipulating spin-polarized electrons in photocatalytic semiconductors via a noncontact external magnetic field.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA05080300)Important Direction Project of Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KZCX2-YW-138)+1 种基金National Natural Science Foundation of China (Grant Nos. 40830852 and 41025007)Chinese Ministry of Science and Technology Projects (Grant Nos. 2007CB8015905 and 2006BAB19B03)
文摘Rising atmospheric CO2 and warming of the global climate that have occurred since the industrial revolution are regarded as fatal threats to coral reefs. We analyzed the skeletal calcification rate of 14 massive Porites corals from the Meiji Reef in the southern South China Sea through X-ray photography of coral skeletons. A general pattern of change in coral skeletal calcifi- cation was determined. The change pattern of coral calcification on the Meiji Reef over the past two centuries can be divided into five periods: calcification increase in 1770-1830, 1870-1920, and 1980-2000 and calcification decline in 1830-1870 and 1920-1980. Over the past two centuries, the largest increase in calcification was 4.5%, occurring in 1770-1830, whereas the largest decline in calcification was 6.2%, occurring in 1920-1980. Coral calcification slightly increased in the recent 20 years (1980-2000). The response relationship of coral calcification to atmospheric CO2 and sea surface temperature (SST) shows that calcification was not correlated with atmospheric CO2 but responded nonlinearly to SST with maxima at ~27.2~C in 1900-2000. On the Meiji Reef, increasing atmospheric CO2 had a negligible effect on coral growth in the past century. How- ever, rising SST improved coral growth in the early and middle 20th century, and restricted coral growth in the recent 20 years.