A kind of environmental friendly anodizing routine for AZ91D magnesium alloy,based on an alkaline borate-potassium acid phthalate(KAP) electrolyte,was studied.The effect of KAP on the properties of the anodized film...A kind of environmental friendly anodizing routine for AZ91D magnesium alloy,based on an alkaline borate-potassium acid phthalate(KAP) electrolyte,was studied.The effect of KAP on the properties of the anodized film was investigated by scanning electron microscopy(SEM),X-ray diffraction(XRD),energy dispersive spectrometry(EDS),potentiodynamic polarization and electrochemical impedance spectroscopy(EIS),respectively.The results showed that the anodizing process,surface morphology,thickness,phase structure and corrosion resistance of the anodized film were strongly dependent on the concentration of KAP.In the presence of adequate KAP,a compact and smooth anodized film with excellent corrosion resistance was obtained.展开更多
There is quite abundant resource of ludwigite ore in Liaoning Province of China. Content of MgO in the slag of pyrometallurgical separation of boron from iron is much higher than that in the ordinary slags. Through th...There is quite abundant resource of ludwigite ore in Liaoning Province of China. Content of MgO in the slag of pyrometallurgical separation of boron from iron is much higher than that in the ordinary slags. Through the equilibrium partition ratio of sulfur L S between the metal and the slag in an atmosphere of CO N 2, the acidic coefficients for B 2O 3 and the basic coefficients for MgO were estimated. The basic formulae were given for the blast furnace type slag containing B 2O 3 and high MgO.展开更多
The Mg-Al-Ti-B alloy prepared by mechanical alloying is poor in microstructural uniformity and compactness. In order to improve the microstructural uniformity and compactness of Mg-Al-Ti-B alloy and thus to improve th...The Mg-Al-Ti-B alloy prepared by mechanical alloying is poor in microstructural uniformity and compactness. In order to improve the microstructural uniformity and compactness of Mg-Al-Ti-B alloy and thus to improve the mechanical properties, effect of B2O3 on microstructure and mechanical properties of cast Mg-9Al-6Ti alloy was studied by optical microscopy, scanning electron microscopy, X-ray diffraction and mechanical property testing. The results show that due to the addition of B2O3, the average grain size of Mg-Al-Ti-B alloys is refined to 12μm, dispersed Ti phases completely disappear, the amount of precipitation phase Mgl7All2 is reduced and TiA13 is increased, and new phases MgB6 and TiaB4 are precipitated. The average hardness, average tensile strength, yield strength and elongation of the alloy are HV 77.1, 171.2 MPa, 113.5 MPa and 5.2%, respectively.展开更多
The stems of water convolvulus were employed as biotemplates for the replication of their optimized 3D hierarchical architecture to synthesize porous MgO-modified TiO2 . The photocatalytic reduction of CO2 with H2O va...The stems of water convolvulus were employed as biotemplates for the replication of their optimized 3D hierarchical architecture to synthesize porous MgO-modified TiO2 . The photocatalytic reduction of CO2 with H2O vapor into hydrocarbon fuel was studied with these MgO-TiO2 nanostructures as the photocatalysts with the benefits of improved CO2 adsorption and activation through incorporated MgO. Various factors involving CO2 adsorption capacity, migration of charge carriers to the surface, and the number of activity sites, which depend on the amount of added MgO, determine the photocatalytic conversion efficiency.展开更多
Using 1-butyl-3-methyl-imidazolium bromide (BM1MBr) as the supporting electrolyte and magne- sium as the sacrificial anode, a new and highly efficient electrochemically catalytic route was devel- oped for the synthe...Using 1-butyl-3-methyl-imidazolium bromide (BM1MBr) as the supporting electrolyte and magne- sium as the sacrificial anode, a new and highly efficient electrochemically catalytic route was devel- oped for the synthesis of cyclic carbonates from epoxides and CO2. Based on the cooperative action of BMIMBr and an electrogenerated magnesium salt obtained under a N2 atmosphere, CO2 reacted with a wide range of epoxides to readily generate cyclic carbonates in moderate to excellent yields under mild conditions.展开更多
Mg-based Mg-TiO2 composite powder was prepared by arc plasma evaporation of the Mg+5%TiO2 mixture followed by passivation in air. ICP, XRD and SEM techniques were used to characterize the composition, phase component...Mg-based Mg-TiO2 composite powder was prepared by arc plasma evaporation of the Mg+5%TiO2 mixture followed by passivation in air. ICP, XRD and SEM techniques were used to characterize the composition, phase components and microstructure of the composite powder. The hydrogen sorption properties of the composite powder were investigated by DSC and PCT techniques. According to the data from PCT measurements, the hydrogenation enthalpy and entropy changes of the composite powder are calculated to be-71.5 kJ/mol and-130.1 J/(K·mol), respectively. Besides, the hydrogenation activation energy is determined to be 77.2 kJ/ mol. The results indicate that TiO2 added into Mg by arc plasma method can act as a catalyst to improve the hydrogen sorption kinetic properties of Mg.展开更多
The catalytic properties of KF/MgO for the synthesis of didodecyl carbonate (DDC) by transesterification from dimethyl carbonate (DMC) and dodecanol were studied.The effects of loading amount of KF and calcining tempe...The catalytic properties of KF/MgO for the synthesis of didodecyl carbonate (DDC) by transesterification from dimethyl carbonate (DMC) and dodecanol were studied.The effects of loading amount of KF and calcining temperature were systemically investigated.The phase structure was characterized by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR).Interaction between KF and the carrier MgO occurred in the process of calcination,and a new phase K2MgF4 formed when calcining temperature was 673 K or above.FTIR results showed that K2CO3 was observed when catalysts calcined in air.When calcining temperature was 873 K and the loading mass amount of KF was 30%,the KF/MgO catalyst exhibited the optimal catalytic properties and the yield of DDC was maximized to 80%.The excellent catalytic properties of KF/MgO was ascribed to the formation of K2MgF4+K2CO3 during the calcination in air.展开更多
The hydrogen storage properties of the nanocomposite Mg 95 Ni 3(MnO 2) 2 (mass fraction, %) were studied. The temperature changes in hydriding/dehydriding process were investigated. The nanocomposite was fabricated by...The hydrogen storage properties of the nanocomposite Mg 95 Ni 3(MnO 2) 2 (mass fraction, %) were studied. The temperature changes in hydriding/dehydriding process were investigated. The nanocomposite was fabricated by ball milling process of mixed elemental Mg, Ni and oxide maganese MnO 2 under hydrogen pressure (approximately 0.6?MPa). The hydrogen absorption and desorption properties of the samples milled for various times were investigated. A remarkable enhancement of hydrogen absorption kinetics and low operational desorption temperature have been found after the sample milled for over 57?h. For example, this nanocomposite can absorb hydrogen more than 6.0% (mass fraction) in 60?s at 200?℃ under 2.0?MPa, and desorption capacity also exceeds 6.0% (mass fraction) in 400?s at 310?℃ under 0.1?MPa. The storage properties of samples milled for various times were studied and the kinetics of the samples were analyzed.展开更多
A facile and user friendly technique to immobilize the late-transition metal complexes on spherical MgCl2/SiO2/THF support has been developed. The spherical MgCl2/SiO2/THF-supported late-transition metal catalysts 2,6...A facile and user friendly technique to immobilize the late-transition metal complexes on spherical MgCl2/SiO2/THF support has been developed. The spherical MgCl2/SiO2/THF-supported late-transition metal catalysts 2,6-bis-[1-(2,6-dimethylphenylimino)ethyl]pyridine iron(II) dichloride(SC-A) and 1,4-bis(2,6-dimethylphenyl)- acenaphthene diimine nickel(II) dibromide(SC-B) for ethylene polymerization has been prepared by spray-drying technique using tetrahydrofuran suspension containing MgCl2, SiO2 and late-transition metal complexes. The catalysts were characterized by BET, XRD, SEM and the polymers were analyzed using GPC, DSC and 13C-NMR. The test results show that spray-drying is a very effective method for immobilizing late-transition metal catalysts for ethylene polymerization. Among six kinds of cocatalysts for olefin polymerization, TMA and TEA were confirmed to be more effective than other compounds for the ethylene polymerization system using the catalyst SC-A. For the case of the catalyst SC-B, DEAC showed the best performance as cocatalysts in ethylene polymerization. The replication of the catalyst morphology was found in the resultant polyethylene.展开更多
基金Projects (50771092,21073162) supported by the National Natural Science Foundation of ChinaProject (08JC1421600) supported by the Science and Technology Commission of Shanghai,ChinaProject (2008AZ2018) supported by the Science and Technology Bureau of Jiaxing,China
文摘A kind of environmental friendly anodizing routine for AZ91D magnesium alloy,based on an alkaline borate-potassium acid phthalate(KAP) electrolyte,was studied.The effect of KAP on the properties of the anodized film was investigated by scanning electron microscopy(SEM),X-ray diffraction(XRD),energy dispersive spectrometry(EDS),potentiodynamic polarization and electrochemical impedance spectroscopy(EIS),respectively.The results showed that the anodizing process,surface morphology,thickness,phase structure and corrosion resistance of the anodized film were strongly dependent on the concentration of KAP.In the presence of adequate KAP,a compact and smooth anodized film with excellent corrosion resistance was obtained.
文摘There is quite abundant resource of ludwigite ore in Liaoning Province of China. Content of MgO in the slag of pyrometallurgical separation of boron from iron is much higher than that in the ordinary slags. Through the equilibrium partition ratio of sulfur L S between the metal and the slag in an atmosphere of CO N 2, the acidic coefficients for B 2O 3 and the basic coefficients for MgO were estimated. The basic formulae were given for the blast furnace type slag containing B 2O 3 and high MgO.
基金Project (2009MS0802) supported by the Inner Mongolian Natural Science Foundation of ChinaProject supported by Inner Mongolia Autonomous Region Talent Development fund of China
文摘The Mg-Al-Ti-B alloy prepared by mechanical alloying is poor in microstructural uniformity and compactness. In order to improve the microstructural uniformity and compactness of Mg-Al-Ti-B alloy and thus to improve the mechanical properties, effect of B2O3 on microstructure and mechanical properties of cast Mg-9Al-6Ti alloy was studied by optical microscopy, scanning electron microscopy, X-ray diffraction and mechanical property testing. The results show that due to the addition of B2O3, the average grain size of Mg-Al-Ti-B alloys is refined to 12μm, dispersed Ti phases completely disappear, the amount of precipitation phase Mgl7All2 is reduced and TiA13 is increased, and new phases MgB6 and TiaB4 are precipitated. The average hardness, average tensile strength, yield strength and elongation of the alloy are HV 77.1, 171.2 MPa, 113.5 MPa and 5.2%, respectively.
基金supported by the National Basic Research Program of China(973 Program,2014CB239302,2013CB632404)the Natural Science Foundation of Jiangsu Province(BK20130053)the National Natural Science Foundation of China(51272101,51202005,21473091)
文摘The stems of water convolvulus were employed as biotemplates for the replication of their optimized 3D hierarchical architecture to synthesize porous MgO-modified TiO2 . The photocatalytic reduction of CO2 with H2O vapor into hydrocarbon fuel was studied with these MgO-TiO2 nanostructures as the photocatalysts with the benefits of improved CO2 adsorption and activation through incorporated MgO. Various factors involving CO2 adsorption capacity, migration of charge carriers to the surface, and the number of activity sites, which depend on the amount of added MgO, determine the photocatalytic conversion efficiency.
基金supported by the National Natural Science Foundation of China(21303053)the Open Project of State Key Laboratory of Chemical Engineering(SKLChE-14C02)~~
文摘Using 1-butyl-3-methyl-imidazolium bromide (BM1MBr) as the supporting electrolyte and magne- sium as the sacrificial anode, a new and highly efficient electrochemically catalytic route was devel- oped for the synthesis of cyclic carbonates from epoxides and CO2. Based on the cooperative action of BMIMBr and an electrogenerated magnesium salt obtained under a N2 atmosphere, CO2 reacted with a wide range of epoxides to readily generate cyclic carbonates in moderate to excellent yields under mild conditions.
基金Project(11ZR1417600)supported by Shanghai Natural Science Foundation from Science and Technology Committee of Shanghai,ChinaProject(11PJ1406000)supported by‘Pujiang’Project from the Science and Technology Committee of Shanghai+1 种基金Project(12ZZ017)supported by Shanghai Education Commission,ChinaProject(20100073120007)supported by China Education Commission
文摘Mg-based Mg-TiO2 composite powder was prepared by arc plasma evaporation of the Mg+5%TiO2 mixture followed by passivation in air. ICP, XRD and SEM techniques were used to characterize the composition, phase components and microstructure of the composite powder. The hydrogen sorption properties of the composite powder were investigated by DSC and PCT techniques. According to the data from PCT measurements, the hydrogenation enthalpy and entropy changes of the composite powder are calculated to be-71.5 kJ/mol and-130.1 J/(K·mol), respectively. Besides, the hydrogenation activation energy is determined to be 77.2 kJ/ mol. The results indicate that TiO2 added into Mg by arc plasma method can act as a catalyst to improve the hydrogen sorption kinetic properties of Mg.
文摘The catalytic properties of KF/MgO for the synthesis of didodecyl carbonate (DDC) by transesterification from dimethyl carbonate (DMC) and dodecanol were studied.The effects of loading amount of KF and calcining temperature were systemically investigated.The phase structure was characterized by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR).Interaction between KF and the carrier MgO occurred in the process of calcination,and a new phase K2MgF4 formed when calcining temperature was 673 K or above.FTIR results showed that K2CO3 was observed when catalysts calcined in air.When calcining temperature was 873 K and the loading mass amount of KF was 30%,the KF/MgO catalyst exhibited the optimal catalytic properties and the yield of DDC was maximized to 80%.The excellent catalytic properties of KF/MgO was ascribed to the formation of K2MgF4+K2CO3 during the calcination in air.
文摘The hydrogen storage properties of the nanocomposite Mg 95 Ni 3(MnO 2) 2 (mass fraction, %) were studied. The temperature changes in hydriding/dehydriding process were investigated. The nanocomposite was fabricated by ball milling process of mixed elemental Mg, Ni and oxide maganese MnO 2 under hydrogen pressure (approximately 0.6?MPa). The hydrogen absorption and desorption properties of the samples milled for various times were investigated. A remarkable enhancement of hydrogen absorption kinetics and low operational desorption temperature have been found after the sample milled for over 57?h. For example, this nanocomposite can absorb hydrogen more than 6.0% (mass fraction) in 60?s at 200?℃ under 2.0?MPa, and desorption capacity also exceeds 6.0% (mass fraction) in 400?s at 310?℃ under 0.1?MPa. The storage properties of samples milled for various times were studied and the kinetics of the samples were analyzed.
基金supported by the National Natural Science Foundation of China (Grant No.U1162114)the Science Foundation of Tianjin University of Science & Technology (20090420)
文摘A facile and user friendly technique to immobilize the late-transition metal complexes on spherical MgCl2/SiO2/THF support has been developed. The spherical MgCl2/SiO2/THF-supported late-transition metal catalysts 2,6-bis-[1-(2,6-dimethylphenylimino)ethyl]pyridine iron(II) dichloride(SC-A) and 1,4-bis(2,6-dimethylphenyl)- acenaphthene diimine nickel(II) dibromide(SC-B) for ethylene polymerization has been prepared by spray-drying technique using tetrahydrofuran suspension containing MgCl2, SiO2 and late-transition metal complexes. The catalysts were characterized by BET, XRD, SEM and the polymers were analyzed using GPC, DSC and 13C-NMR. The test results show that spray-drying is a very effective method for immobilizing late-transition metal catalysts for ethylene polymerization. Among six kinds of cocatalysts for olefin polymerization, TMA and TEA were confirmed to be more effective than other compounds for the ethylene polymerization system using the catalyst SC-A. For the case of the catalyst SC-B, DEAC showed the best performance as cocatalysts in ethylene polymerization. The replication of the catalyst morphology was found in the resultant polyethylene.