Specific management of water regimes, soil and N in China might play an important role in regulating N2O and CH4 emissions in rice fields. Nitrous oxide and methane emissions from alternate non-flooded/flooded paddies...Specific management of water regimes, soil and N in China might play an important role in regulating N2O and CH4 emissions in rice fields. Nitrous oxide and methane emissions from alternate non-flooded/flooded paddies were monitored simultaneously during a 516-day incubation with lysimeter experiments. Two N sources (15N-(NH4)2SO4 and 15N-labeled milk vetch) were applied to two contrasting paddies: one derived from Xiashu loess (Loess) and one from Quaternary red clay (Clay). Both N2O and CH4 emissions were significantly higher in soil Clay than in soil Loess during the flooded period. For both soil, N2O emissions peaked at the transition periods shortly after the beginning of the flooded and non-flooded seasons. Soil type affected N2O emission patterns. In soil Clay, the emission peak during the transition period from non-flooded to flooded conditions was much higher than the peak during the transition period from flooded to non-flooded conditions. In soil Loess, the emission peak during the transition period from flooded to non-flooded conditions was obviously higher than the peak during the transition period from non-flooded to flooded conditions except for milk vetch treatment. Soil type also had a significant effect on CH4 emissions during the flooded season, over which the weighted average flux was 111 mg C m-2 h-1 and 2.2 mg C m-2 h-1 from Clay and Loess, respectively. Results indicated that it was the transition in the water regime that dominated N2O emissions while it was the soil type that dominated CH4 emissions during the flooded season. Anaerobic oxidation of methane possibly existed in soil Loess during the flooded season.展开更多
[Objective] The aim was to overview the emission of greenhouse gases in farmland. [Method] Based on domestic and foreign references, production mechanism, discharging characters and major influential factors of CO2, C...[Objective] The aim was to overview the emission of greenhouse gases in farmland. [Method] Based on domestic and foreign references, production mechanism, discharging characters and major influential factors of CO2, CH4 and N2O in soils of farmland were overviewed. [Result] Production and discharge of CO2, CH. and N2O played an important role in circulation of carbon and nitrogen in terrestrial ecosystem and constituted a key method for carbon and nitrogen output. It is significant to conduct research on reduction of greenhouse gas and increase of absorption. [Conclusion] The research is beneficial for exploration on discharge rule and influential factors of greenhouse gases, providing theoretical references for reduction of greenhouse gases and study on climate change.展开更多
An efficient chiral Br?nsted acid-catalyzed conjugate addition of indoles to azadienes has been successfully developed,which enables a facile approach to optically active hetero-triarylmethanes with excellent enantios...An efficient chiral Br?nsted acid-catalyzed conjugate addition of indoles to azadienes has been successfully developed,which enables a facile approach to optically active hetero-triarylmethanes with excellent enantioselectivities and broad substrate scope.This chiral Br?nsted acid catalytic system provides a new opportunity for the development of asymmetric reactions of azadienes.展开更多
A new CuII complex with a diazamesocyclic ligand based on 1,4-diazacycloheptane (DACH) and functionalized with two additional quinoline donor groups, namely N,N-bis(quinolin-8- ylmethyl)-1,4-diazacycloheptane L, has b...A new CuII complex with a diazamesocyclic ligand based on 1,4-diazacycloheptane (DACH) and functionalized with two additional quinoline donor groups, namely N,N-bis(quinolin-8- ylmethyl)-1,4-diazacycloheptane L, has been synthesized and characterized. X-ray diffraction analysis at room temperature indicates that the title complex [CuLCl](ClO4) 1 (C25H26Cl2N4O4Cu, Mr = 580.94) crystallizes in triclinic, space group P1 with a = 9.589(3), b = 10.857(4), c = 12.724(5) ? a = 98.168(7), b = 106.945(7), g = 101.248(7), V = 1214.6(8) 3, Z = 2, Dc = 1.588 g/cm3, F(000) = 598 and m(MoKa) = 1.161 mm-1. The final R = 0.0479 and wR = 0.0985 with 4267 independent reflections. In the mononuclear CuII complex, the CuII center is pentacoordinated to four nitrogen donors of the ligand and one axial chloride anion, taking a coordination sphere in the midst of the ideal square- pyramid and trigonal bipyramid.展开更多
Addressing concerns about mitigating greenhouse gas (GHG) emissions while maintaining high grain yield requires improved management practices that achieve sustainable intensification of cereal production systems. In...Addressing concerns about mitigating greenhouse gas (GHG) emissions while maintaining high grain yield requires improved management practices that achieve sustainable intensification of cereal production systems. In the North China Plain, a field experiment was conducted to measure nitrous oxide (N2O) and methane (CH4) fluxes during the maize (Zea mays L.) season under various agricultural management regimes including conventional treatment (CONT) with high N fertilizer application at a rate of 300 kg N ha-1 and overuse of groundwater by flood irrigation, optimal fertilization 1 treatment (OPTIT), optimal fertilization 2 treatment (OPT2T), and controlled-release urea treatment (CRUT) with reduced N fertilizer application and irrigation, and a control (CK) with no N fertilizer. In contrast to CONT, balanced N fertilization treatments (OPT1T, OPT2T, and CRUT) and CK demonstrated a significant drop in cumulative N20 emission (1.70 v.s. 0.43-1.07 kg N ha-l), indicating that balanced N fertilization substantially reduced N20 emission. The vMues of the N20 emission factor were 0.42%, 0.29%, 0.32%, and 0.27% for CONT, OPTIT, OPT2T, and CRUT, respectively. Global warming potentials, which were predominantly determined by N20 emission, were estimated to be 188 kg CO2-eq ha-1 for CK and 419-765 kg CO2-eq ha-1 for the N fertilization treatments. Global warming potential intensity calculated by considering maize yield was significantly lower for OPT1T, OPT2T, CRUT, and CK than for CONT. Therefore, OPTIT, OPT2T, and CRUT were recommended as promising management practices for sustaining maize yield and reducing GHG emissions in the North China Plain.展开更多
基金Project supported by the National Natural Science Foundation of China (Nos. 30390080 and 30390081).
文摘Specific management of water regimes, soil and N in China might play an important role in regulating N2O and CH4 emissions in rice fields. Nitrous oxide and methane emissions from alternate non-flooded/flooded paddies were monitored simultaneously during a 516-day incubation with lysimeter experiments. Two N sources (15N-(NH4)2SO4 and 15N-labeled milk vetch) were applied to two contrasting paddies: one derived from Xiashu loess (Loess) and one from Quaternary red clay (Clay). Both N2O and CH4 emissions were significantly higher in soil Clay than in soil Loess during the flooded period. For both soil, N2O emissions peaked at the transition periods shortly after the beginning of the flooded and non-flooded seasons. Soil type affected N2O emission patterns. In soil Clay, the emission peak during the transition period from non-flooded to flooded conditions was much higher than the peak during the transition period from flooded to non-flooded conditions. In soil Loess, the emission peak during the transition period from flooded to non-flooded conditions was obviously higher than the peak during the transition period from non-flooded to flooded conditions except for milk vetch treatment. Soil type also had a significant effect on CH4 emissions during the flooded season, over which the weighted average flux was 111 mg C m-2 h-1 and 2.2 mg C m-2 h-1 from Clay and Loess, respectively. Results indicated that it was the transition in the water regime that dominated N2O emissions while it was the soil type that dominated CH4 emissions during the flooded season. Anaerobic oxidation of methane possibly existed in soil Loess during the flooded season.
基金Supported by the Special R&D Fund for Public Welfare IndustryApplication of Remote Sensing Technology in Agrometeorological Forecast(GYHY201106027)~~
文摘[Objective] The aim was to overview the emission of greenhouse gases in farmland. [Method] Based on domestic and foreign references, production mechanism, discharging characters and major influential factors of CO2, CH4 and N2O in soils of farmland were overviewed. [Result] Production and discharge of CO2, CH. and N2O played an important role in circulation of carbon and nitrogen in terrestrial ecosystem and constituted a key method for carbon and nitrogen output. It is significant to conduct research on reduction of greenhouse gas and increase of absorption. [Conclusion] The research is beneficial for exploration on discharge rule and influential factors of greenhouse gases, providing theoretical references for reduction of greenhouse gases and study on climate change.
文摘An efficient chiral Br?nsted acid-catalyzed conjugate addition of indoles to azadienes has been successfully developed,which enables a facile approach to optically active hetero-triarylmethanes with excellent enantioselectivities and broad substrate scope.This chiral Br?nsted acid catalytic system provides a new opportunity for the development of asymmetric reactions of azadienes.
基金This work was financially supported by NNSFC (No. 29971019)
文摘A new CuII complex with a diazamesocyclic ligand based on 1,4-diazacycloheptane (DACH) and functionalized with two additional quinoline donor groups, namely N,N-bis(quinolin-8- ylmethyl)-1,4-diazacycloheptane L, has been synthesized and characterized. X-ray diffraction analysis at room temperature indicates that the title complex [CuLCl](ClO4) 1 (C25H26Cl2N4O4Cu, Mr = 580.94) crystallizes in triclinic, space group P1 with a = 9.589(3), b = 10.857(4), c = 12.724(5) ? a = 98.168(7), b = 106.945(7), g = 101.248(7), V = 1214.6(8) 3, Z = 2, Dc = 1.588 g/cm3, F(000) = 598 and m(MoKa) = 1.161 mm-1. The final R = 0.0479 and wR = 0.0985 with 4267 independent reflections. In the mononuclear CuII complex, the CuII center is pentacoordinated to four nitrogen donors of the ligand and one axial chloride anion, taking a coordination sphere in the midst of the ideal square- pyramid and trigonal bipyramid.
基金Supported by the National Natural Science Foundation of China(Nos.30870414 and 31170489)the Special Fund for Agroscientific Research in the Public Interest of China(No.201103039)
文摘Addressing concerns about mitigating greenhouse gas (GHG) emissions while maintaining high grain yield requires improved management practices that achieve sustainable intensification of cereal production systems. In the North China Plain, a field experiment was conducted to measure nitrous oxide (N2O) and methane (CH4) fluxes during the maize (Zea mays L.) season under various agricultural management regimes including conventional treatment (CONT) with high N fertilizer application at a rate of 300 kg N ha-1 and overuse of groundwater by flood irrigation, optimal fertilization 1 treatment (OPTIT), optimal fertilization 2 treatment (OPT2T), and controlled-release urea treatment (CRUT) with reduced N fertilizer application and irrigation, and a control (CK) with no N fertilizer. In contrast to CONT, balanced N fertilization treatments (OPT1T, OPT2T, and CRUT) and CK demonstrated a significant drop in cumulative N20 emission (1.70 v.s. 0.43-1.07 kg N ha-l), indicating that balanced N fertilization substantially reduced N20 emission. The vMues of the N20 emission factor were 0.42%, 0.29%, 0.32%, and 0.27% for CONT, OPTIT, OPT2T, and CRUT, respectively. Global warming potentials, which were predominantly determined by N20 emission, were estimated to be 188 kg CO2-eq ha-1 for CK and 419-765 kg CO2-eq ha-1 for the N fertilization treatments. Global warming potential intensity calculated by considering maize yield was significantly lower for OPT1T, OPT2T, CRUT, and CK than for CONT. Therefore, OPTIT, OPT2T, and CRUT were recommended as promising management practices for sustaining maize yield and reducing GHG emissions in the North China Plain.