The electrical resistivity characteristics of cement soil and flyash lime soil are investigated in the laboratory and the field. It is shown that the electrical resistivities of the cement soil and flyash lime s...The electrical resistivity characteristics of cement soil and flyash lime soil are investigated in the laboratory and the field. It is shown that the electrical resistivities of the cement soil and flyash lime soil are sensitive to water content, degree of saturation and unconfined strength. The cement soil and flyash lime soil with higher water content, greater degree of saturation, lower unconfined strength has lower electrical resistivity. Electrical resistivity is also correlated with additives. Based on the tests, it is concluded that the electrical resistivity method is available for checking the effectiveness of the soil improvement by the cement soil and flyash lime soil mixing pile in terms of engineering practice.展开更多
The mixture of CaHPO 4·2H 2O and CaCO 3 was ground in an aqueous system under appropriate conditions to investigate the mechanochemical reaction for the synthesis of crystalline hydroxyapatite (HA) powder. Hyd...The mixture of CaHPO 4·2H 2O and CaCO 3 was ground in an aqueous system under appropriate conditions to investigate the mechanochemical reaction for the synthesis of crystalline hydroxyapatite (HA) powder. Hydroxyapatite of high crystallinity powder including trace Ca 10 (PO 4) 6CO 3(OH) and Ca 9HPO 4(PO 4) 6OH can be synthesized by mechanical activation without further thermal treatment at a high temperature. The synthesis reaction during the grinding process was almost completed within 1h. The as-ground powder exhibits a particle distribution of 20-100nm in size with a spherical or rodlike morphology. The composition and degree of crystallinity of the mechanochemical synthesized hydroxyapatite powders were coincident with the cement-type hydroxyapatite.展开更多
The effects of aluminium nitride(AlN)hydrolysis on fractal geometry characteristics of residue from secondary aluminium dross were studied using response surface methodology.The results show that the fractal dimension...The effects of aluminium nitride(AlN)hydrolysis on fractal geometry characteristics of residue from secondary aluminium dross were studied using response surface methodology.The results show that the fractal dimensions of the residue can be significantly influenced by the AlN hydrolysis from secondary aluminium dross.The hydrolysis of AlN in the dross was spontaneous under temperatures of303-373K.The actual fractal dimensions of residue were significantly affected by the liquid-solid ratio(p<0.05)and changed from1.16to1.80,which accurately aligned with those from the calculations.Moreover,the fractal dimensions of residue were significantly affected by the interactions between hydrolysis temperature and hydrolysis time,liquid-solid ratio and hydrolysis time,respectively(p<0.01).The minimum fractal dimensions of the residue reached1.15under the optimized conditions,which included a hydrolysis temperature of30℃,liquid-solid ratio of5mL/g and hydrolysis time of10min.The results suggest that response surface methodology can guide in optimizing the conditions of AlN hydrolysis in order to obtain the minimum fractal dimensions of residue for improving the reutilization of the dross.展开更多
Cement improves properties of soil materials, such as durability, stiffness, strength and moisture susceptibility. Each of them needs different cement contents that might not be suitable for other properties. Typicall...Cement improves properties of soil materials, such as durability, stiffness, strength and moisture susceptibility. Each of them needs different cement contents that might not be suitable for other properties. Typically, high cement content is desirable for durability, but not for shrinkage and cracking issues on the surface. Thus, improving durability with low cement content while complying with other requirements is an ideal aim, which may be achieved by pozzolanic supplementary products. Pozzolans contribute in hydration reactions and optimise cement consumptions in favour of durable and low shrinkage products. In this paper, the mixes of nano-silica and fly ash are considered to investigate their effect on strength, durability and shrinkage of modified CRB (crushed rock base) material. In the end, the benefits and features of nano-silica as a pozzolanic material will be focused and discussed more for effective cement consumption in soils.展开更多
In several countries, the residual RHA (rice husk ash) has been produced in rice processing industries or in thermoelectric plants that use rice husk to generate heat and/or electrical energy, usually without burnin...In several countries, the residual RHA (rice husk ash) has been produced in rice processing industries or in thermoelectric plants that use rice husk to generate heat and/or electrical energy, usually without burning process control. This causes a reduction in the amorphous silica content of residual RHA, which distinguishes them from the RHA produced according to controlled burning process, which is totally amorphous and considered a highly reactive pozzolan. In this paper, the hydration products and the porous structure of binders paste were studied by replacing, in weight of 5%, 10% and 20% of Portland cement OPC (ordinary Portland cement), by residual RHAs named A and B, which have high and low content of amorphous silica, respectively, using microstructure evaluation techniques as XRD (X-ray diffraction), TG (thermogravimetric) tests and MIP (mercury intrusion porosimetry). A reducing the size of the pores of the pastes was observed according to the increase of content replacement of RHA A and RHA B.展开更多
文摘The electrical resistivity characteristics of cement soil and flyash lime soil are investigated in the laboratory and the field. It is shown that the electrical resistivities of the cement soil and flyash lime soil are sensitive to water content, degree of saturation and unconfined strength. The cement soil and flyash lime soil with higher water content, greater degree of saturation, lower unconfined strength has lower electrical resistivity. Electrical resistivity is also correlated with additives. Based on the tests, it is concluded that the electrical resistivity method is available for checking the effectiveness of the soil improvement by the cement soil and flyash lime soil mixing pile in terms of engineering practice.
文摘The mixture of CaHPO 4·2H 2O and CaCO 3 was ground in an aqueous system under appropriate conditions to investigate the mechanochemical reaction for the synthesis of crystalline hydroxyapatite (HA) powder. Hydroxyapatite of high crystallinity powder including trace Ca 10 (PO 4) 6CO 3(OH) and Ca 9HPO 4(PO 4) 6OH can be synthesized by mechanical activation without further thermal treatment at a high temperature. The synthesis reaction during the grinding process was almost completed within 1h. The as-ground powder exhibits a particle distribution of 20-100nm in size with a spherical or rodlike morphology. The composition and degree of crystallinity of the mechanochemical synthesized hydroxyapatite powders were coincident with the cement-type hydroxyapatite.
基金Project (21577176) supported by the National Natural Science Foundation of ChinaProject (2016,No.59-3) supported by the Environment Protection Scientific Research Project of Hunan Province,China
文摘The effects of aluminium nitride(AlN)hydrolysis on fractal geometry characteristics of residue from secondary aluminium dross were studied using response surface methodology.The results show that the fractal dimensions of the residue can be significantly influenced by the AlN hydrolysis from secondary aluminium dross.The hydrolysis of AlN in the dross was spontaneous under temperatures of303-373K.The actual fractal dimensions of residue were significantly affected by the liquid-solid ratio(p<0.05)and changed from1.16to1.80,which accurately aligned with those from the calculations.Moreover,the fractal dimensions of residue were significantly affected by the interactions between hydrolysis temperature and hydrolysis time,liquid-solid ratio and hydrolysis time,respectively(p<0.01).The minimum fractal dimensions of the residue reached1.15under the optimized conditions,which included a hydrolysis temperature of30℃,liquid-solid ratio of5mL/g and hydrolysis time of10min.The results suggest that response surface methodology can guide in optimizing the conditions of AlN hydrolysis in order to obtain the minimum fractal dimensions of residue for improving the reutilization of the dross.
文摘Cement improves properties of soil materials, such as durability, stiffness, strength and moisture susceptibility. Each of them needs different cement contents that might not be suitable for other properties. Typically, high cement content is desirable for durability, but not for shrinkage and cracking issues on the surface. Thus, improving durability with low cement content while complying with other requirements is an ideal aim, which may be achieved by pozzolanic supplementary products. Pozzolans contribute in hydration reactions and optimise cement consumptions in favour of durable and low shrinkage products. In this paper, the mixes of nano-silica and fly ash are considered to investigate their effect on strength, durability and shrinkage of modified CRB (crushed rock base) material. In the end, the benefits and features of nano-silica as a pozzolanic material will be focused and discussed more for effective cement consumption in soils.
文摘In several countries, the residual RHA (rice husk ash) has been produced in rice processing industries or in thermoelectric plants that use rice husk to generate heat and/or electrical energy, usually without burning process control. This causes a reduction in the amorphous silica content of residual RHA, which distinguishes them from the RHA produced according to controlled burning process, which is totally amorphous and considered a highly reactive pozzolan. In this paper, the hydration products and the porous structure of binders paste were studied by replacing, in weight of 5%, 10% and 20% of Portland cement OPC (ordinary Portland cement), by residual RHAs named A and B, which have high and low content of amorphous silica, respectively, using microstructure evaluation techniques as XRD (X-ray diffraction), TG (thermogravimetric) tests and MIP (mercury intrusion porosimetry). A reducing the size of the pores of the pastes was observed according to the increase of content replacement of RHA A and RHA B.