Using a fixed point theorem in cones, the paper consider the existence of positive solutions for a class of second-order m-point boundary value problem. Sufficient conditions to ensure the existence of double positive...Using a fixed point theorem in cones, the paper consider the existence of positive solutions for a class of second-order m-point boundary value problem. Sufficient conditions to ensure the existence of double positive solutions are obtained. The associated Green function of this problem is also given.展开更多
The author demonstrate that the two-point boundary value problemhas a solution (A,P(8)), where III is the smallest parameter, under the minimal stringent resstrictions oil f(8), by applying the shooting and regularisa...The author demonstrate that the two-point boundary value problemhas a solution (A,P(8)), where III is the smallest parameter, under the minimal stringent resstrictions oil f(8), by applying the shooting and regularisation methods. In a classic paper)Kolmogorov et. al. studied in 1937 a problem which can be converted into a special case of theabove problem.The author also use the solutioll (A, p(8)) to construct a weak travelling wave front solutionu(x, t) = y((), (= x -- Ct, C = AN/(N + 1), of the generalized diffusion equation with reactionO { 1 O.IN ̄1 OUI onde L k(u) i ox: &)  ̄ & = g(u),where N > 0, k(8) > 0 a.e. on [0, 1], and f(s):= ac i: g(t)kl/N(t)dt is absolutely continuouson [0, 11, while y(() is increasing and absolutely continuous on (--co, +co) and(k(y(())ly,(OI'), = g(y(()) -- Cy'(f) a.e. on (--co, +co),y( ̄oo)  ̄ 0, y(+oo)  ̄ 1.展开更多
文摘Using a fixed point theorem in cones, the paper consider the existence of positive solutions for a class of second-order m-point boundary value problem. Sufficient conditions to ensure the existence of double positive solutions are obtained. The associated Green function of this problem is also given.
文摘The author demonstrate that the two-point boundary value problemhas a solution (A,P(8)), where III is the smallest parameter, under the minimal stringent resstrictions oil f(8), by applying the shooting and regularisation methods. In a classic paper)Kolmogorov et. al. studied in 1937 a problem which can be converted into a special case of theabove problem.The author also use the solutioll (A, p(8)) to construct a weak travelling wave front solutionu(x, t) = y((), (= x -- Ct, C = AN/(N + 1), of the generalized diffusion equation with reactionO { 1 O.IN ̄1 OUI onde L k(u) i ox: &)  ̄ & = g(u),where N > 0, k(8) > 0 a.e. on [0, 1], and f(s):= ac i: g(t)kl/N(t)dt is absolutely continuouson [0, 11, while y(() is increasing and absolutely continuous on (--co, +co) and(k(y(())ly,(OI'), = g(y(()) -- Cy'(f) a.e. on (--co, +co),y( ̄oo)  ̄ 0, y(+oo)  ̄ 1.