A compound ethyl(5S,6R)-2-(4-methylphenyl)-6-[(1R)-tert-butyldimethylsilyloxyethy]-penem-3-carboxylate was synthesized through displacement,acylation and Wittig cyclization reaction of optically active material(3R,4R)...A compound ethyl(5S,6R)-2-(4-methylphenyl)-6-[(1R)-tert-butyldimethylsilyloxyethy]-penem-3-carboxylate was synthesized through displacement,acylation and Wittig cyclization reaction of optically active material(3R,4R)-3-[(1R)-tert-butyldimethylsilyloxyethyl]-4-acetoxy-2-azetidi-none(4AA)upon thionocarboxlic acid.The intermediates and the target product were characterized by 1HNMR,IR,elementary analysis and MS.展开更多
以三(三甲基硅基)肼锂和对甲苯磺酰叠氮为起始原料,合成了高活性的1,2‐二(三甲基硅基)二氮烯(BSD),进一步利用其二聚反应,合成了1,1,4,4‐四(三甲基硅基)四氮烯(TST),总收率约5.0%,通过核磁共振谱、红外光谱、元素分析和紫外‐可见吸...以三(三甲基硅基)肼锂和对甲苯磺酰叠氮为起始原料,合成了高活性的1,2‐二(三甲基硅基)二氮烯(BSD),进一步利用其二聚反应,合成了1,1,4,4‐四(三甲基硅基)四氮烯(TST),总收率约5.0%,通过核磁共振谱、红外光谱、元素分析和紫外‐可见吸收光谱对BSD和TST的结构进行了表征。通过量子化学计算方法研究了BSD二聚反应的机理。结果表明,发现其先异构化为1,1‐二(三甲基硅基)二氮烯中间体,然后两个中间体相互作用形成TST,两个过程分别需要高达103.0 k J·mol^(-1)和114.3 k J·mol^(-1)的活化能,该理论结果与高温条件有利于BSD转化为TST的实验现象一致。展开更多
The mechanism of the cycloaddition reaction of forming a silicic bis-heterocyclic compound between singlet dimethylmethylenesilylene (Me2C=Si:) and ethene has been investigated with the CCSD(T)//MP2/6-31G* metho...The mechanism of the cycloaddition reaction of forming a silicic bis-heterocyclic compound between singlet dimethylmethylenesilylene (Me2C=Si:) and ethene has been investigated with the CCSD(T)//MP2/6-31G* method. From the potential energy profile, it can be predicted that, this reaction has one dominant channel. The presented rule of this dominant channel: the 3p unoccupied orbital of Si in dimethylmethylenesilylene and the π orbital of ethene forming the π→p donor-acceptor bond, resulting in the formation of three-membered ring intermediate (INT1); INT1 then isomerizes to a four-membered ring silylene (P2), which is driven by ring-enlargement effect; due to sp3 hybridization of Si atom in P2, P2 further combines with ethene to form a silicic bis-heterocyclic compound.展开更多
Vapor-liquid equilibrium (VLE) for a ternary system of methyldichlorosilane + methylvinyldichlorosi-lane + toluene and constituent binary systems were measured at 101.3kPa using a new type of magnetical pump-ebulliome...Vapor-liquid equilibrium (VLE) for a ternary system of methyldichlorosilane + methylvinyldichlorosi-lane + toluene and constituent binary systems were measured at 101.3kPa using a new type of magnetical pump-ebulliometer. The equilibrium compositions of the vapor phase of binary systems were calculated indirectly from the total pressure-temperature-liquid composition (pTx). The experimental data were correlated with the Wilson and NRTL(non-random two liquid) equations. The parameters of the Wilson model were employed to predict the ternary VLE data. The calculated boiling points were in good agreement with the experimental ones.展开更多
Composite membranes have attracted increasing attentions owing to their potential applications for CO2 separation. In this work, ceramic supported polydimethylsiloxane (PDMS) and poly (ethylene glycol) diacrylate ...Composite membranes have attracted increasing attentions owing to their potential applications for CO2 separation. In this work, ceramic supported polydimethylsiloxane (PDMS) and poly (ethylene glycol) diacrylate (PEGDA) composite membranes were prepared. The microstructure and physicochemical properties of the compos- ite membranes were characterized. Preparation conditions were systematically optimized. The gas separation performance of the as-prepared membranes was studied by pure gas and binary gas permeation measurement of CO〉 N2 and H〉 Experiments showed that PDMS, as silicone rubber, exhibited larger permeance and lower separation factors. Conversely, PEGDA composite membrane presented smaller gas permeance but higher ideal selectivity for CO2/N2. Compared to the performance of those membranes using polymeric supports or freestanding membranes, the two kinds of ceramic supported composite membranes exhibited higher gas permeance and acceptable selectivity. Therefore, the ceramic supported composite membrane can be expected as a candidate for CO2 separation from light gases.展开更多
Pervaporation(PV),as an environmental friendly and energy-saving separation technology,has been received increasing attention in recent years.This article reviews the preparation and application of macroporous ceramic...Pervaporation(PV),as an environmental friendly and energy-saving separation technology,has been received increasing attention in recent years.This article reviews the preparation and application of macroporous ceramic-supported polymer composite pervaporation membranes.The separation materials of polymer/ceramic composite membranes presented here include hydrophobic polydimethylsiloxane(PDMS) and hydrophilic poly(vinyl alcohol)(PVA),chitosan(CS) and polyelectrolytes.The effects of ceramic support treatment,polymer solution properties,interfacial adhesion and incorporating or blending modification on the membrane structure and PV performance are discussed.Two in-situ characterization methods developed for polymer/ceramic composite membranes are also covered in the discussion.The applications of these composite membranes in pervaporation process are summarized as well,which contain the bio-fuels recovery,gasoline desulfuration and PV coupled proc-ess using PDMS/ceramic composite membrane,and dehydration of alcohols and esters using ceramic-supported PVA or PVA-CS composite membrane.Finally,a brief conclusion remark on polymer/ceramic composite mem-branes is given and possible future research is outlined.展开更多
Acrylonitrile-methyl methacrylate (AN-MMA) copolymer/silica nanocomposites were synthesized by in-situ emulsion polymerization initiated by 2,2'-azobis(2-amidinopropane) dihydrochloride absorbed onto colloidal si...Acrylonitrile-methyl methacrylate (AN-MMA) copolymer/silica nanocomposites were synthesized by in-situ emulsion polymerization initiated by 2,2'-azobis(2-amidinopropane) dihydrochloride absorbed onto colloidal silica particles, and the mesoporous carbon materials were prepared through carbonization of the obtained AN-MMA copolymer/silica nanocomposites, followed by HF etching. Thermogravimetric analysis of AN-MMAcopolymer/silica nanocomposltes snoweO mat me caroon ylelCl or copolymer was slgnuy oecreaseo as Silica parucle incorporated. N2 adsorption-desorption, scan electron microscopy (SEM) and transmission electron microscopy (TEM) were used to characterize the structure and morphology of the mesoporous carbon materials. Both SEM and展开更多
We proposed a novel method of fabricating polydimethylsiloxane (PDMS) microfluidic chip polymer master molds in this paper. The method mainly includes two steps. First, a stainless steel slice was laser etched to form...We proposed a novel method of fabricating polydimethylsiloxane (PDMS) microfluidic chip polymer master molds in this paper. The method mainly includes two steps. First, a stainless steel slice was laser etched to form a metal model. Then, the organic solution of poly(methyl methacrylate) (PMMA) was casted onto the metal model to fabricate the PMMA master which subsequently would be used to fabricate PDMS chips. We systematically researched different laser parameters influencing the surface status of microchannels and obtained optimized etching parameters. We investigated and optimized the organic solution composition of PMMA while casting chip masters, and developed a method to form fine polymer masters using two different viscosity solutions to cast the model in turn, and studied the repeatable replication. Then, we investigated physical performance of this chip and evaluated the practicability by analyzing Rhodamine B. Compared with present methods, the proposed method does not need photolithography on photoresistant and chemical etching. The entire fabricating progress is simple, fast, low-cost and can be controlled easily. Only several minutes are required to make a metal model, 3 hours for a PMMA master, and one day for PDMS chips.展开更多
Sorption isotherm of chloroform in polyvinyl dimethylsiloxane (PVDMS) polymer film was measured via the gravimetric method, and this film was confirmed experimentally to be good membrane material to recover chloroform...Sorption isotherm of chloroform in polyvinyl dimethylsiloxane (PVDMS) polymer film was measured via the gravimetric method, and this film was confirmed experimentally to be good membrane material to recover chloroform from gas stream with high sorption capacity. A new PVDMS-Al2O3 composite hollow fibre membrane was further prepared by coating a PVDMS film on the outer surface of Al2O3 hollow fibre porpous substrate prepared by a dry/wet phase inversion method. Microstructure of the composite membranes was examined by scanning electron microscopy (SEM), indicating the PVDMS coating layer was uniform, free of defects, and around 15μm thick. Performance of the PVDMS-Al2O3 composite hollow fibre membranes for chloroform recovery was investigated. By comparing the experimental data that derived from a mathematical model, the permeabilities of chloroform and nitrogen in the PVDMS polymer membrane were obtained. The effects of temperature and feed flow rate on the chloroform recovery and permeate concentration were investigated both experimentally and theoretically.展开更多
Vapor-liquid equilibrium data of hexamethyl disiloxane+vinyl acetate system at 101.3kPa were measured by using double circulating vapor-liquid equilibrium still.The thermodynamic consistency of the VLE data was examin...Vapor-liquid equilibrium data of hexamethyl disiloxane+vinyl acetate system at 101.3kPa were measured by using double circulating vapor-liquid equilibrium still.The thermodynamic consistency of the VLE data was examined by Herrington method.Experimental data was correlated by non-random two-liquid(NRTL),Wilson and universal quasichemical(UNIQUAC)parameter models.All the models satisfactorily correlated with the VLE data.The result showed that the NRTL model was the most suitable one to represent experimental data satisfactorily.The system had a minimum temperature azeotrope at 345.71 K and the mole azeotropic composition was 0.0541.展开更多
文摘A compound ethyl(5S,6R)-2-(4-methylphenyl)-6-[(1R)-tert-butyldimethylsilyloxyethy]-penem-3-carboxylate was synthesized through displacement,acylation and Wittig cyclization reaction of optically active material(3R,4R)-3-[(1R)-tert-butyldimethylsilyloxyethyl]-4-acetoxy-2-azetidi-none(4AA)upon thionocarboxlic acid.The intermediates and the target product were characterized by 1HNMR,IR,elementary analysis and MS.
文摘以三(三甲基硅基)肼锂和对甲苯磺酰叠氮为起始原料,合成了高活性的1,2‐二(三甲基硅基)二氮烯(BSD),进一步利用其二聚反应,合成了1,1,4,4‐四(三甲基硅基)四氮烯(TST),总收率约5.0%,通过核磁共振谱、红外光谱、元素分析和紫外‐可见吸收光谱对BSD和TST的结构进行了表征。通过量子化学计算方法研究了BSD二聚反应的机理。结果表明,发现其先异构化为1,1‐二(三甲基硅基)二氮烯中间体,然后两个中间体相互作用形成TST,两个过程分别需要高达103.0 k J·mol^(-1)和114.3 k J·mol^(-1)的活化能,该理论结果与高温条件有利于BSD转化为TST的实验现象一致。
文摘The mechanism of the cycloaddition reaction of forming a silicic bis-heterocyclic compound between singlet dimethylmethylenesilylene (Me2C=Si:) and ethene has been investigated with the CCSD(T)//MP2/6-31G* method. From the potential energy profile, it can be predicted that, this reaction has one dominant channel. The presented rule of this dominant channel: the 3p unoccupied orbital of Si in dimethylmethylenesilylene and the π orbital of ethene forming the π→p donor-acceptor bond, resulting in the formation of three-membered ring intermediate (INT1); INT1 then isomerizes to a four-membered ring silylene (P2), which is driven by ring-enlargement effect; due to sp3 hybridization of Si atom in P2, P2 further combines with ethene to form a silicic bis-heterocyclic compound.
基金Supported by the Natural Science Foundation of Jiangxi Province(No.0020019).
文摘Vapor-liquid equilibrium (VLE) for a ternary system of methyldichlorosilane + methylvinyldichlorosi-lane + toluene and constituent binary systems were measured at 101.3kPa using a new type of magnetical pump-ebulliometer. The equilibrium compositions of the vapor phase of binary systems were calculated indirectly from the total pressure-temperature-liquid composition (pTx). The experimental data were correlated with the Wilson and NRTL(non-random two liquid) equations. The parameters of the Wilson model were employed to predict the ternary VLE data. The calculated boiling points were in good agreement with the experimental ones.
基金Supported by the National Basic Research Program of China (2009CB623406), the National Natural Science Foundation of China (20990222) and the Natural Science Foundation of Jiangsu Province (BK2009021, SBK200930313).
文摘Composite membranes have attracted increasing attentions owing to their potential applications for CO2 separation. In this work, ceramic supported polydimethylsiloxane (PDMS) and poly (ethylene glycol) diacrylate (PEGDA) composite membranes were prepared. The microstructure and physicochemical properties of the compos- ite membranes were characterized. Preparation conditions were systematically optimized. The gas separation performance of the as-prepared membranes was studied by pure gas and binary gas permeation measurement of CO〉 N2 and H〉 Experiments showed that PDMS, as silicone rubber, exhibited larger permeance and lower separation factors. Conversely, PEGDA composite membrane presented smaller gas permeance but higher ideal selectivity for CO2/N2. Compared to the performance of those membranes using polymeric supports or freestanding membranes, the two kinds of ceramic supported composite membranes exhibited higher gas permeance and acceptable selectivity. Therefore, the ceramic supported composite membrane can be expected as a candidate for CO2 separation from light gases.
文摘Pervaporation(PV),as an environmental friendly and energy-saving separation technology,has been received increasing attention in recent years.This article reviews the preparation and application of macroporous ceramic-supported polymer composite pervaporation membranes.The separation materials of polymer/ceramic composite membranes presented here include hydrophobic polydimethylsiloxane(PDMS) and hydrophilic poly(vinyl alcohol)(PVA),chitosan(CS) and polyelectrolytes.The effects of ceramic support treatment,polymer solution properties,interfacial adhesion and incorporating or blending modification on the membrane structure and PV performance are discussed.Two in-situ characterization methods developed for polymer/ceramic composite membranes are also covered in the discussion.The applications of these composite membranes in pervaporation process are summarized as well,which contain the bio-fuels recovery,gasoline desulfuration and PV coupled proc-ess using PDMS/ceramic composite membrane,and dehydration of alcohols and esters using ceramic-supported PVA or PVA-CS composite membrane.Finally,a brief conclusion remark on polymer/ceramic composite mem-branes is given and possible future research is outlined.
基金Supported by the Program for New Century Excellent Talents in University (NCET-07-0738)
文摘Acrylonitrile-methyl methacrylate (AN-MMA) copolymer/silica nanocomposites were synthesized by in-situ emulsion polymerization initiated by 2,2'-azobis(2-amidinopropane) dihydrochloride absorbed onto colloidal silica particles, and the mesoporous carbon materials were prepared through carbonization of the obtained AN-MMA copolymer/silica nanocomposites, followed by HF etching. Thermogravimetric analysis of AN-MMAcopolymer/silica nanocomposltes snoweO mat me caroon ylelCl or copolymer was slgnuy oecreaseo as Silica parucle incorporated. N2 adsorption-desorption, scan electron microscopy (SEM) and transmission electron microscopy (TEM) were used to characterize the structure and morphology of the mesoporous carbon materials. Both SEM and
基金Funded by the Natural Science Foundation of China (No. 20775096)
文摘We proposed a novel method of fabricating polydimethylsiloxane (PDMS) microfluidic chip polymer master molds in this paper. The method mainly includes two steps. First, a stainless steel slice was laser etched to form a metal model. Then, the organic solution of poly(methyl methacrylate) (PMMA) was casted onto the metal model to fabricate the PMMA master which subsequently would be used to fabricate PDMS chips. We systematically researched different laser parameters influencing the surface status of microchannels and obtained optimized etching parameters. We investigated and optimized the organic solution composition of PMMA while casting chip masters, and developed a method to form fine polymer masters using two different viscosity solutions to cast the model in turn, and studied the repeatable replication. Then, we investigated physical performance of this chip and evaluated the practicability by analyzing Rhodamine B. Compared with present methods, the proposed method does not need photolithography on photoresistant and chemical etching. The entire fabricating progress is simple, fast, low-cost and can be controlled easily. Only several minutes are required to make a metal model, 3 hours for a PMMA master, and one day for PDMS chips.
文摘Sorption isotherm of chloroform in polyvinyl dimethylsiloxane (PVDMS) polymer film was measured via the gravimetric method, and this film was confirmed experimentally to be good membrane material to recover chloroform from gas stream with high sorption capacity. A new PVDMS-Al2O3 composite hollow fibre membrane was further prepared by coating a PVDMS film on the outer surface of Al2O3 hollow fibre porpous substrate prepared by a dry/wet phase inversion method. Microstructure of the composite membranes was examined by scanning electron microscopy (SEM), indicating the PVDMS coating layer was uniform, free of defects, and around 15μm thick. Performance of the PVDMS-Al2O3 composite hollow fibre membranes for chloroform recovery was investigated. By comparing the experimental data that derived from a mathematical model, the permeabilities of chloroform and nitrogen in the PVDMS polymer membrane were obtained. The effects of temperature and feed flow rate on the chloroform recovery and permeate concentration were investigated both experimentally and theoretically.
文摘Vapor-liquid equilibrium data of hexamethyl disiloxane+vinyl acetate system at 101.3kPa were measured by using double circulating vapor-liquid equilibrium still.The thermodynamic consistency of the VLE data was examined by Herrington method.Experimental data was correlated by non-random two-liquid(NRTL),Wilson and universal quasichemical(UNIQUAC)parameter models.All the models satisfactorily correlated with the VLE data.The result showed that the NRTL model was the most suitable one to represent experimental data satisfactorily.The system had a minimum temperature azeotrope at 345.71 K and the mole azeotropic composition was 0.0541.