One-dimensional heterogeneous plug flow model was employed to model an adiabatic fixed-bed reactor for the catalytic dehydration of methanol to dimethyl ether.Longitudinal temperature and conversion profiles predicted...One-dimensional heterogeneous plug flow model was employed to model an adiabatic fixed-bed reactor for the catalytic dehydration of methanol to dimethyl ether.Longitudinal temperature and conversion profiles predicted by this model were compared to those experimentally measured in a bench scale reactor.The reactor was packed with 1.5mm γ-Al2O3 pellets as dehydration catalyst and operated in a temperature range of 543-603K at an atmospheric pressure.Also,the effects of weight hourly space velocity(WHSV)and temperature on methanol conversion were investigated.According to the results,the maximum conversion is obtained at 603.15K with WHSV of 72.87h-1.展开更多
Influence of reaction temperature, pressure and space velocity on the direct synthesis of dimethyl ether (DME) from syngas is studied in an isothermal fixed-bed reactor. The catalyst is a physical mixture of C301 copp...Influence of reaction temperature, pressure and space velocity on the direct synthesis of dimethyl ether (DME) from syngas is studied in an isothermal fixed-bed reactor. The catalyst is a physical mixture of C301 copper-based methanol (MeOH) synthesis catalyst and ZSM-5 dehydration catalyst. The experimental results show that the chemical synergy between methanol synthesis reaction and methanol dehydration reaction is evident. The conversion of carbon monoxide is over 90%.展开更多
文摘One-dimensional heterogeneous plug flow model was employed to model an adiabatic fixed-bed reactor for the catalytic dehydration of methanol to dimethyl ether.Longitudinal temperature and conversion profiles predicted by this model were compared to those experimentally measured in a bench scale reactor.The reactor was packed with 1.5mm γ-Al2O3 pellets as dehydration catalyst and operated in a temperature range of 543-603K at an atmospheric pressure.Also,the effects of weight hourly space velocity(WHSV)and temperature on methanol conversion were investigated.According to the results,the maximum conversion is obtained at 603.15K with WHSV of 72.87h-1.
文摘Influence of reaction temperature, pressure and space velocity on the direct synthesis of dimethyl ether (DME) from syngas is studied in an isothermal fixed-bed reactor. The catalyst is a physical mixture of C301 copper-based methanol (MeOH) synthesis catalyst and ZSM-5 dehydration catalyst. The experimental results show that the chemical synergy between methanol synthesis reaction and methanol dehydration reaction is evident. The conversion of carbon monoxide is over 90%.