A cavity quantum electrodynamics scheme for preparing a genuinely entangled state [A. Borras, et al., J. Phys. A 40 (2007) 13407] on six two-level atoms is proposed. In the scheme, the atom-cavity detuning is much b...A cavity quantum electrodynamics scheme for preparing a genuinely entangled state [A. Borras, et al., J. Phys. A 40 (2007) 13407] on six two-level atoms is proposed. In the scheme, the atom-cavity detuning is much bigger than the atom-cavity coupling strength and the necessary preparation time is much shorter than the Rydberg-atom lifespan. Hence the scheme has two distinct features, i.e., insensitive to the cavity decay and the atom radiation.展开更多
Confined low dimensional charges with high density such as two-dimensional electron gas(2 DEG)at interfaces and charged domain walls in ferroelectrics show great potential to serve as functional elements in future nan...Confined low dimensional charges with high density such as two-dimensional electron gas(2 DEG)at interfaces and charged domain walls in ferroelectrics show great potential to serve as functional elements in future nanoelectronics.However,stabilization and control of low dimensional charges is challenging,as they are usually subject to enormous depolarization fields.Here,we demonstrate a method to fabricate tunable charged interfaces with~77°,86°and 94°head-to-head polarization configurations in multiferroic Bi Fe O_(3) thin films by grain boundary engineering.The adjacent grains are cohesively bonded and the boundary is about 1 nm in width and devoid of any amorphous region.Remarkably,the polarization remains almost unchanged near the grain boundaries,indicating the polarization charges are well compensated,i.e.,there should be two-dimensional charge gas confined at grain boundaries.Adjusting the tilt angle of the grain boundaries enables tuning the angle of polarization configurations from 71°to 109°,which in turn allows the control of charge density at the grain boundaries.This general and feasible method opens new doors for the application of charged interfaces in next generation nanoelectronics.展开更多
Lead halide perovskites have attracted extensive attention in recent years because of their excellent photoelectronic properties, such as high absorption coefficients,carrier mobilities, defect tolerances, and photolu...Lead halide perovskites have attracted extensive attention in recent years because of their excellent photoelectronic properties, such as high absorption coefficients,carrier mobilities, defect tolerances, and photoluminescence efficiencies. However, a key issue hindering their commercial application is the toxicity of lead. Replacing lead with other nontoxic elements is a promising solution to this problem.Considering their atomic radii, relative atomic masses, and electron arrangements, perovskites based on Sn, Bi, Sb, and other elements instead of Pb have been widely synthesized.Here, we summarized the growth methods, photoelectric properties, and device applications of these lead-free perovskites. First, we introduced several common growth methods for lead-free perovskites, including solution methods,solid-state reaction, and chemical vapor deposition methods.Second, we discussed the photoelectric properties and methods for optimizing these properties of lead-free perovskites with different structure dimensions. Finally, the applications of lead-free perovskites in solar cells, light-emitting diodes,and X-ray detectors were examined. This review also provides suggestions for future research on lead-free perovskites.展开更多
The two-dimensional atomically thin insulator hexagonal boron nitride (h-BN) constitutes a new paradigm in tunnel based devices. A large band gap, along with its atomically flat nature without dangling bonds or inte...The two-dimensional atomically thin insulator hexagonal boron nitride (h-BN) constitutes a new paradigm in tunnel based devices. A large band gap, along with its atomically flat nature without dangling bonds or interface trap states, makes it an ideal candidate for tunnel spin transport in spintronic devices. Here, we demonstrate the tunneling of spin-polarized electrons through large area monolayer h-BN prepared by chemical vapor deposition in magnetic tunnel junctions. In ferromagnet/h-BN/ferromagnet heterostructures fabricated on a chip scale, we show tunnel magnetoresistance at room temperature. Measurements at different bias voltages and on multiple devices with different ferromagnetic electrodes establish the spin polarized tunneling using h-BN barriers. These results open the way for integration of 2D monolayer insulating barriers in active spintronic devices and circuits operating at ambient temperature, and for further exploration of their properties and prospects.展开更多
The structure and properties of CeO2 surfaces have been intensively studied due to their importance in a lot of surface-related applications. Since most of surface techniques probe the structure information inside the...The structure and properties of CeO2 surfaces have been intensively studied due to their importance in a lot of surface-related applications. Since most of surface techniques probe the structure information inside the outermost surface plane, the subsurface structure information has been elusive in many studies. Using the profile imaging with aberration-corrected transmission electron microscopy, the structure information in both the outermost layer and the sublayers of the CeO2(100) surface has been obtained. In addition to the normal structures that have been reported before, where the surface is Ce-or O-terminated, a metastable surface has been discovered. In the new structure, there is an atomic layer reversal between the outermost layer and the sublayer, giving a structure with O as the outermost layer for the stoichiometry of normal Ce-terminated surface. The charge redistribution for the polarity compensation has also been changed relative to the normal surface.展开更多
基金Supported by the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20103401110007the National Natural Science Foundation of China under Grant Nos.10975001 and 10874122+1 种基金the Talent Foundation of High Education of Anhui Province for Outstanding Youth under Grant No.2009SQRZ018the Science Research Foundation of Anhui University for Youth under Grant No.2009QN017B
文摘A cavity quantum electrodynamics scheme for preparing a genuinely entangled state [A. Borras, et al., J. Phys. A 40 (2007) 13407] on six two-level atoms is proposed. In the scheme, the atom-cavity detuning is much bigger than the atom-cavity coupling strength and the necessary preparation time is much shorter than the Rydberg-atom lifespan. Hence the scheme has two distinct features, i.e., insensitive to the cavity decay and the atom radiation.
基金supported by the National Basic Research Program of China(2016YFA0300804)the National Natural Science Foundation of China(51672007 and 11974023)+6 种基金Key Area R&D Program of Guangdong Province(2018B010109009)the Key R&D Program of Guangdong Province(2018B030327001)National Equipment Program of China(ZDYZ2015-1)the‘‘2011 Program”Peking-Tsinghua-IOP Collaborative Innovation Centre for Quantum Mattersupported by the National Basic Research Program of China(2016YFA0301004)the National Natural Science Foundation of China(51872155,52025024)the Beijing Advanced Innovation Center for Future Chip(ICFC)。
文摘Confined low dimensional charges with high density such as two-dimensional electron gas(2 DEG)at interfaces and charged domain walls in ferroelectrics show great potential to serve as functional elements in future nanoelectronics.However,stabilization and control of low dimensional charges is challenging,as they are usually subject to enormous depolarization fields.Here,we demonstrate a method to fabricate tunable charged interfaces with~77°,86°and 94°head-to-head polarization configurations in multiferroic Bi Fe O_(3) thin films by grain boundary engineering.The adjacent grains are cohesively bonded and the boundary is about 1 nm in width and devoid of any amorphous region.Remarkably,the polarization remains almost unchanged near the grain boundaries,indicating the polarization charges are well compensated,i.e.,there should be two-dimensional charge gas confined at grain boundaries.Adjusting the tilt angle of the grain boundaries enables tuning the angle of polarization configurations from 71°to 109°,which in turn allows the control of charge density at the grain boundaries.This general and feasible method opens new doors for the application of charged interfaces in next generation nanoelectronics.
基金Ministry of Science and Technology (2017YFA0205004, 2016YFA0200700)the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB36000000)+2 种基金the National Natural Science Foundation of China (61704038, 21673054, 11874130, 12074086, 61307120, 61704038 and 11474187)the Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics (KF201902)the CAS Instrument Development Project (Y950291) for their support。
文摘Lead halide perovskites have attracted extensive attention in recent years because of their excellent photoelectronic properties, such as high absorption coefficients,carrier mobilities, defect tolerances, and photoluminescence efficiencies. However, a key issue hindering their commercial application is the toxicity of lead. Replacing lead with other nontoxic elements is a promising solution to this problem.Considering their atomic radii, relative atomic masses, and electron arrangements, perovskites based on Sn, Bi, Sb, and other elements instead of Pb have been widely synthesized.Here, we summarized the growth methods, photoelectric properties, and device applications of these lead-free perovskites. First, we introduced several common growth methods for lead-free perovskites, including solution methods,solid-state reaction, and chemical vapor deposition methods.Second, we discussed the photoelectric properties and methods for optimizing these properties of lead-free perovskites with different structure dimensions. Finally, the applications of lead-free perovskites in solar cells, light-emitting diodes,and X-ray detectors were examined. This review also provides suggestions for future research on lead-free perovskites.
文摘The two-dimensional atomically thin insulator hexagonal boron nitride (h-BN) constitutes a new paradigm in tunnel based devices. A large band gap, along with its atomically flat nature without dangling bonds or interface trap states, makes it an ideal candidate for tunnel spin transport in spintronic devices. Here, we demonstrate the tunneling of spin-polarized electrons through large area monolayer h-BN prepared by chemical vapor deposition in magnetic tunnel junctions. In ferromagnet/h-BN/ferromagnet heterostructures fabricated on a chip scale, we show tunnel magnetoresistance at room temperature. Measurements at different bias voltages and on multiple devices with different ferromagnetic electrodes establish the spin polarized tunneling using h-BN barriers. These results open the way for integration of 2D monolayer insulating barriers in active spintronic devices and circuits operating at ambient temperature, and for further exploration of their properties and prospects.
基金supported by the National natural Science Foundation of China(51525102,51390475,51371102 and 21673277)the National Basic Research Program of China(2015CB654902)
文摘The structure and properties of CeO2 surfaces have been intensively studied due to their importance in a lot of surface-related applications. Since most of surface techniques probe the structure information inside the outermost surface plane, the subsurface structure information has been elusive in many studies. Using the profile imaging with aberration-corrected transmission electron microscopy, the structure information in both the outermost layer and the sublayers of the CeO2(100) surface has been obtained. In addition to the normal structures that have been reported before, where the surface is Ce-or O-terminated, a metastable surface has been discovered. In the new structure, there is an atomic layer reversal between the outermost layer and the sublayer, giving a structure with O as the outermost layer for the stoichiometry of normal Ce-terminated surface. The charge redistribution for the polarity compensation has also been changed relative to the normal surface.