Infrared spectroscopy studies of 2 methyl 4,5 dimethoxy 3 oxo 2H pyridizine (MDOP) in 12 pure organic solvents were undertaken to investigate the solvent solute interactions. The frequencies of the carbonyl (C...Infrared spectroscopy studies of 2 methyl 4,5 dimethoxy 3 oxo 2H pyridizine (MDOP) in 12 pure organic solvents were undertaken to investigate the solvent solute interactions. The frequencies of the carbonyl (C=O) of MDOP were correlated with solvent properties such as solvent acceptor number (AN) and the linear solvation energy relationships (LSER). These frequencies showed a good correlation with the solvent acceptor number (AN) and the LSER.展开更多
The dibutyl phthalate (DBP) concentration in liqueur was measured by gas chromatography-mass spectrometry (GC-MS), and the uncertainty during the mea-surement was evaluated in this study. The results showed that t...The dibutyl phthalate (DBP) concentration in liqueur was measured by gas chromatography-mass spectrometry (GC-MS), and the uncertainty during the mea-surement was evaluated in this study. The results showed that the combined stan-dard uncertainty was determined as 0.028 and the expanded uncertainty was 0.056 at confidence probability p=95%, coverage factor k=2, by fol owing the methods de-scribed in GB/T 21911-2008 "Determination of Phthalate Esters in Foods". The av-erage DBP concentration in the liqueur of eight repeated measurements was(0.985± 0.056) mg/kg finaly.展开更多
A new kind of phenyl-functionalized magnetic fibrous mesoporous silica(Fe3 O4@Si O2@KCC-1-phenyl) was prepared by copolymerization as an efficient adsorbent for the magnetic extraction of phthalate esters from environ...A new kind of phenyl-functionalized magnetic fibrous mesoporous silica(Fe3 O4@Si O2@KCC-1-phenyl) was prepared by copolymerization as an efficient adsorbent for the magnetic extraction of phthalate esters from environmental water samples. The obtained Fe3 O4@Si O2@KCC-1-phenyl showed monodisperse fibrous spherical morphology, fairly strong magnetic response(29 emu/g), and an abundant π-electron system, which allowed rapid isolation of the Fe3 O4@Si O2@KCC-1-phenyl from solutions upon applying an appropriate magnetic field. Several variables that affect the extraction efficiency of the analytes,including the type of the elution solvent, amount of adsorbent, extraction time and reusability, were investigated and optimized. Under optimum conditions, the Fe3 O4@Si O2@KCC-1-phenyl was used for the extraction of four phthalate esters from environmental water samples followed by high-performance liquid chromatographic analysis. Validation experiments indicated that the developed method presented good linearity(0.1-20 ng/m L), low limit of detection(7.5-29 μg/L, S/N =3). The proposed method was applied to the determination of phthalate esters in different real water samples, with relative recoveries of 93%-103.4%and relative standard deviation of 0.8%-8.3%.展开更多
Polycyclic aromatic hydrocarbons (PAHs) in soil retain for a quite long period due to their hydrophobicity and aggregation properties. Biofilm-forming marine bacterial consortium (named as NCPR), composed of Steno...Polycyclic aromatic hydrocarbons (PAHs) in soil retain for a quite long period due to their hydrophobicity and aggregation properties. Biofilm-forming marine bacterial consortium (named as NCPR), composed of Stenotrophomonas acidaminiphila NCW702, Alcaligenes faecalis NCW402, Pseudomonas mendocina NR802, Pseudornonas aeruginosa N6P6, and Pseudomonas pseudoalcaligenes NP103, was used for the bioremediation of PAHs in a soil microcosm. Phenanthrene and pyrene were used as reference PAHs. Parameters that can affect PAH degradation, such as chemotaxis, solubility of PAHs in extracellular polymeric substances (EPS), and catechol 2,3-dioxygenase (C230) activity, were evaluated. P. aeruginosa N6P6 and P. pseudoalcaligenes NP103 showed chemotactic movement towards both the reference PAHs. The solubility of both the PAHs was increased with an increase in EPS concentration (extracted from all the 5 selected isolates). Significantly (P 〈 0.001) high phenanthrene (70.29%) and pyrene (55.54%) degradation was observed in the bioaugmented soil microcosm. The C230 enzyme activity was significantly (P 〈 0.05) higher in the bioaugmented soil mi- crocosm with phenanthrene added at 173.26 ± 2.06 nmol rain-1 mg-1 protein than with pyrene added at 61.80 ± 2.20 nmol min-1 mg-1 protein. The C230 activity and gas chromatography-mass spectrometer analyses indicated catechol pathway of phenanthrene metabolism. However, the metabolites obtained from the soil microcosm added with pyrene revealed both the catechol and phthalate pathways for pyrene degradation.展开更多
文摘Infrared spectroscopy studies of 2 methyl 4,5 dimethoxy 3 oxo 2H pyridizine (MDOP) in 12 pure organic solvents were undertaken to investigate the solvent solute interactions. The frequencies of the carbonyl (C=O) of MDOP were correlated with solvent properties such as solvent acceptor number (AN) and the linear solvation energy relationships (LSER). These frequencies showed a good correlation with the solvent acceptor number (AN) and the LSER.
文摘The dibutyl phthalate (DBP) concentration in liqueur was measured by gas chromatography-mass spectrometry (GC-MS), and the uncertainty during the mea-surement was evaluated in this study. The results showed that the combined stan-dard uncertainty was determined as 0.028 and the expanded uncertainty was 0.056 at confidence probability p=95%, coverage factor k=2, by fol owing the methods de-scribed in GB/T 21911-2008 "Determination of Phthalate Esters in Foods". The av-erage DBP concentration in the liqueur of eight repeated measurements was(0.985± 0.056) mg/kg finaly.
基金supported by the Commonwealth Scientific Foundation for Industry of Chinese Inspection and Quarantine (No.201210071) of the Ministry of National Science and Technology of ChinaChongqing Key Laboratory of Scientific Utilization of Tobacco Resources
文摘A new kind of phenyl-functionalized magnetic fibrous mesoporous silica(Fe3 O4@Si O2@KCC-1-phenyl) was prepared by copolymerization as an efficient adsorbent for the magnetic extraction of phthalate esters from environmental water samples. The obtained Fe3 O4@Si O2@KCC-1-phenyl showed monodisperse fibrous spherical morphology, fairly strong magnetic response(29 emu/g), and an abundant π-electron system, which allowed rapid isolation of the Fe3 O4@Si O2@KCC-1-phenyl from solutions upon applying an appropriate magnetic field. Several variables that affect the extraction efficiency of the analytes,including the type of the elution solvent, amount of adsorbent, extraction time and reusability, were investigated and optimized. Under optimum conditions, the Fe3 O4@Si O2@KCC-1-phenyl was used for the extraction of four phthalate esters from environmental water samples followed by high-performance liquid chromatographic analysis. Validation experiments indicated that the developed method presented good linearity(0.1-20 ng/m L), low limit of detection(7.5-29 μg/L, S/N =3). The proposed method was applied to the determination of phthalate esters in different real water samples, with relative recoveries of 93%-103.4%and relative standard deviation of 0.8%-8.3%.
基金supported in part by the Department of Biotechnology, Ministry of Science and Technology, Government of India (No. BT/PR14998/GBD/ 27/279/2010)
文摘Polycyclic aromatic hydrocarbons (PAHs) in soil retain for a quite long period due to their hydrophobicity and aggregation properties. Biofilm-forming marine bacterial consortium (named as NCPR), composed of Stenotrophomonas acidaminiphila NCW702, Alcaligenes faecalis NCW402, Pseudomonas mendocina NR802, Pseudornonas aeruginosa N6P6, and Pseudomonas pseudoalcaligenes NP103, was used for the bioremediation of PAHs in a soil microcosm. Phenanthrene and pyrene were used as reference PAHs. Parameters that can affect PAH degradation, such as chemotaxis, solubility of PAHs in extracellular polymeric substances (EPS), and catechol 2,3-dioxygenase (C230) activity, were evaluated. P. aeruginosa N6P6 and P. pseudoalcaligenes NP103 showed chemotactic movement towards both the reference PAHs. The solubility of both the PAHs was increased with an increase in EPS concentration (extracted from all the 5 selected isolates). Significantly (P 〈 0.001) high phenanthrene (70.29%) and pyrene (55.54%) degradation was observed in the bioaugmented soil microcosm. The C230 enzyme activity was significantly (P 〈 0.05) higher in the bioaugmented soil mi- crocosm with phenanthrene added at 173.26 ± 2.06 nmol rain-1 mg-1 protein than with pyrene added at 61.80 ± 2.20 nmol min-1 mg-1 protein. The C230 activity and gas chromatography-mass spectrometer analyses indicated catechol pathway of phenanthrene metabolism. However, the metabolites obtained from the soil microcosm added with pyrene revealed both the catechol and phthalate pathways for pyrene degradation.