Two-dimensional materials(2D)with unique physicochemical properties have been widely studied for their use in many applications,including as hydrogen evolution catalysts to improve the efficiency of water splitting.Re...Two-dimensional materials(2D)with unique physicochemical properties have been widely studied for their use in many applications,including as hydrogen evolution catalysts to improve the efficiency of water splitting.Recently,typical 2D materials MoS2,graphene,MXenes,and black phosphorus have been widely investigated for their application in the hydrogen evolution reaction(HER).In this review,we summarize three efficient strategies—defect engineering,heterostructure formation,and heteroatom doping—for improving the HER performance of 2D catalysts.The d-band theory,density of states,and Fermi energy level are discussed to provide guidance for the design and construction of novel 2D materials.The challenges and prospects of 2D materials in the HER are also considered.展开更多
Two types of composites were prepared with Al-4.5Cu alloy as a matrix using stir casting method.One was reinforced with 10wt.%of Si C and 2wt.%of MoS2.The other was reinforced with 10wt.%of Si C and 4wt.%of MoS2.Their...Two types of composites were prepared with Al-4.5Cu alloy as a matrix using stir casting method.One was reinforced with 10wt.%of Si C and 2wt.%of MoS2.The other was reinforced with 10wt.%of Si C and 4wt.%of MoS2.Their surfaces were remelted using a CO2 laser beam with an objective to study the influence of laser surface melting(LSM).The topography,microhardness,corrosion resistance and wear resistance of the laser melted surfaces were studied.Overall surface integrity after LSM was compared with as-cast surface.LSM enhanced the microhardness and wear resistance of the surface in each case.Porosity of the laser melted surface was low and corrosion resistance was high.Thus,LSM can be conveniently applied to enhancing the surface integrity of the aluminium composites.However,there is an optimum laser specific energy,around 38 J/m^2 in this study,for obtaining the best surface integrity.展开更多
Ultrathin small MoS2nanosheets exhibit a higher electrocatalytic activity for the hydrogen evolution reaction.However,strong interactions between MoS2layers may result in aggregation;together with the low conductivity...Ultrathin small MoS2nanosheets exhibit a higher electrocatalytic activity for the hydrogen evolution reaction.However,strong interactions between MoS2layers may result in aggregation;together with the low conductivity of MoS2,this may lower its electrocatalytic activity.In this paper we present a method that we developed to directly produce solid S,N co‐doped carbon(SNC)with a graphite structure and multiple surface groups through a hydrothermal route.When Na2MoO4was added to the reaction,polymolybdate could be anchored into the carbon materials via a chemical interaction that helps polymolybdate disperse uniformly into the SNC.After a high temperature treatment,polymolybdate transformed into MoS2at800°C for6h in a N2atmosphere at a heating rate of5°C/min,owing to S2?being released from the SNC during the treatment(denoted as MoS2/SNC‐800‐6h).The SNC effectively prevents MoS2from aggregating into large particles,and we successfully prepared highly dispersed MoS2in the SNC matrix.Electrochemical characterizations indicate that MoS2/SNC‐900‐12h exhibits a low onset potential of115mV and a low overpotential of237mV at a current density of10mA/cm2.Furthermore,MoS2/SNC‐900‐12h also had an excellent stability with only^2.6%decay at a current density of10mA/cm2after5000test cycles.展开更多
Building highly active and stable noble metal single atom(MSA)catalyst onto photocatalyst materials for nitrogen reduction reaction(NRR)and CO2 reduction reaction(CRR)is a key to future renewable energy conversion and...Building highly active and stable noble metal single atom(MSA)catalyst onto photocatalyst materials for nitrogen reduction reaction(NRR)and CO2 reduction reaction(CRR)is a key to future renewable energy conversion and storage technologies.Here we present a design strategy to optimize the stability and electronic property of noble metal single atoms(MSAs,M=Rh,Pd,Ag,Ir,Pt,Au)catalyst supported on g-C3N4 and 2H-MoS2 photocatalysts towards NRR and CRR.Our results indicate that the MSAs tend to be trapped at the anion-vacancy sites of photocatalyst rather than the pristine photocatalyst surface.This anion vacancy can promise the MSAs with an optimized electron-captured ability in the photoexcitation process,thus decreasing the energy barriers of NRR and CRR on MSAs.Especially,it is revealed that the N-vacancy-stabilized Ir SA on g-C3N4 and the S-vacancy-stabilized RhSA on 2H-MoS2 own the lowest energy barrier in NRR.However,for CRR,the HCOOH is the main product on MSAs supported by gC3N4 and 2H-MoS2.The N-vacancy-stabilized PdSA on g-C3N4 and the S-vacancy-stabilized AuSA on 2H-MoS2 show the lowest energy barrier for HCOOH production in CRR.This finding offers an approach to design specific active MSA centres on photocatalysts by the anion vacancy engineering.展开更多
文摘Two-dimensional materials(2D)with unique physicochemical properties have been widely studied for their use in many applications,including as hydrogen evolution catalysts to improve the efficiency of water splitting.Recently,typical 2D materials MoS2,graphene,MXenes,and black phosphorus have been widely investigated for their application in the hydrogen evolution reaction(HER).In this review,we summarize three efficient strategies—defect engineering,heterostructure formation,and heteroatom doping—for improving the HER performance of 2D catalysts.The d-band theory,density of states,and Fermi energy level are discussed to provide guidance for the design and construction of novel 2D materials.The challenges and prospects of 2D materials in the HER are also considered.
文摘Two types of composites were prepared with Al-4.5Cu alloy as a matrix using stir casting method.One was reinforced with 10wt.%of Si C and 2wt.%of MoS2.The other was reinforced with 10wt.%of Si C and 4wt.%of MoS2.Their surfaces were remelted using a CO2 laser beam with an objective to study the influence of laser surface melting(LSM).The topography,microhardness,corrosion resistance and wear resistance of the laser melted surfaces were studied.Overall surface integrity after LSM was compared with as-cast surface.LSM enhanced the microhardness and wear resistance of the surface in each case.Porosity of the laser melted surface was low and corrosion resistance was high.Thus,LSM can be conveniently applied to enhancing the surface integrity of the aluminium composites.However,there is an optimum laser specific energy,around 38 J/m^2 in this study,for obtaining the best surface integrity.
基金supported by the National Natural Science Foundation of China(21671011)Beijing High-Level Talent program~~
文摘Ultrathin small MoS2nanosheets exhibit a higher electrocatalytic activity for the hydrogen evolution reaction.However,strong interactions between MoS2layers may result in aggregation;together with the low conductivity of MoS2,this may lower its electrocatalytic activity.In this paper we present a method that we developed to directly produce solid S,N co‐doped carbon(SNC)with a graphite structure and multiple surface groups through a hydrothermal route.When Na2MoO4was added to the reaction,polymolybdate could be anchored into the carbon materials via a chemical interaction that helps polymolybdate disperse uniformly into the SNC.After a high temperature treatment,polymolybdate transformed into MoS2at800°C for6h in a N2atmosphere at a heating rate of5°C/min,owing to S2?being released from the SNC during the treatment(denoted as MoS2/SNC‐800‐6h).The SNC effectively prevents MoS2from aggregating into large particles,and we successfully prepared highly dispersed MoS2in the SNC matrix.Electrochemical characterizations indicate that MoS2/SNC‐900‐12h exhibits a low onset potential of115mV and a low overpotential of237mV at a current density of10mA/cm2.Furthermore,MoS2/SNC‐900‐12h also had an excellent stability with only^2.6%decay at a current density of10mA/cm2after5000test cycles.
基金financially supported by the Tencent Foundation through the XPLORER PRIZE,Chinathe National Natural Science Foundation of China(51671003)+3 种基金the National Basic Research Program of China(2016YFB0100201)start-up support from Peking Universitythe Young Thousand Talented Programthe computation support from Jincai Zhao's group of Institute of Chemistry,Chinese Academy of Sciences。
文摘Building highly active and stable noble metal single atom(MSA)catalyst onto photocatalyst materials for nitrogen reduction reaction(NRR)and CO2 reduction reaction(CRR)is a key to future renewable energy conversion and storage technologies.Here we present a design strategy to optimize the stability and electronic property of noble metal single atoms(MSAs,M=Rh,Pd,Ag,Ir,Pt,Au)catalyst supported on g-C3N4 and 2H-MoS2 photocatalysts towards NRR and CRR.Our results indicate that the MSAs tend to be trapped at the anion-vacancy sites of photocatalyst rather than the pristine photocatalyst surface.This anion vacancy can promise the MSAs with an optimized electron-captured ability in the photoexcitation process,thus decreasing the energy barriers of NRR and CRR on MSAs.Especially,it is revealed that the N-vacancy-stabilized Ir SA on g-C3N4 and the S-vacancy-stabilized RhSA on 2H-MoS2 own the lowest energy barrier in NRR.However,for CRR,the HCOOH is the main product on MSAs supported by gC3N4 and 2H-MoS2.The N-vacancy-stabilized PdSA on g-C3N4 and the S-vacancy-stabilized AuSA on 2H-MoS2 show the lowest energy barrier for HCOOH production in CRR.This finding offers an approach to design specific active MSA centres on photocatalysts by the anion vacancy engineering.