A mixed-signal driver chip for a 132 × 64-pixel passive matrix OLED panel is presented. The chip has a 64-step gray scale control using the PWM method and two-step voltage pre-charge technology to pre-charge the ...A mixed-signal driver chip for a 132 × 64-pixel passive matrix OLED panel is presented. The chip has a 64-step gray scale control using the PWM method and two-step voltage pre-charge technology to pre-charge the OLED pixels. It consists of a digital controller,SRAM for display data memory,a DC-DC voltage converter,reference current generators,a pre-charge voltage generator,64 common drivers, and 132 segment drivers. The single chip is a typical current-drive circuit. It has been implemented in a Chartered 0.35/μm 18V HV (DDD) CMOS process with a die area of 10mm× 2mm. Test results show that the power consumption of the whole chip and all pixels with a constant driving current of 100μA while displaying the highest gray scale is 294mW with a 12V high voltage supply and a 3V low voltage supply.展开更多
In this paper,the low and the high frequency noises of a laser diode have been analyzed. Based on the analysis a novel scheme that adapts analog and digital hybrid techniques is proposed to stabilize the output power ...In this paper,the low and the high frequency noises of a laser diode have been analyzed. Based on the analysis a novel scheme that adapts analog and digital hybrid techniques is proposed to stabilize the output power of a laser diode. With the hybrid controller,the low and the high frequency noises of a laser diode are conspicuously reduced.By accurate calculation,the short-term stability of the output power of laser diode reaches ±0.55‰, and the long-term stability is ±0.7‰.展开更多
Characteristics of R22 and its new alternative refrigerant R200 flowing through adiabatic capillary tubes are investigated based on the homogeneous model. Extensive flow variables along tube length such as pressure, t...Characteristics of R22 and its new alternative refrigerant R200 flowing through adiabatic capillary tubes are investigated based on the homogeneous model. Extensive flow variables along tube length such as pressure, temperature, viscosity, velocity. Reynolds number, friction factor and vapor quality etc are compared between the two fluids under the same operating condition. Two cases are considered, namely, either the same tube length or the same mass flow rate as inlet condition. The results show that the mass flow rate in the capillary tube of R290 is 40% lower than that of R22 due to the differences of physical properties between the two fluids. Further. a parametric analysis is performed and it appears that effects of geometric and thermodynamic parameters on mass flow rate of R290 are weaker than that of R22. When the condensing temperature is increased from 40℃ to 50℃ C. the mass flow rate for R22 is increased by 16%. while the increasing rate for R290 is 13%.展开更多
An integrated laser diode driver(LDD) driving an edge-emitting laser diode was designed and fabricated by 0.35 μm BiCMOS technology. This paper proposes a scheme which combines the automatic power control loop and te...An integrated laser diode driver(LDD) driving an edge-emitting laser diode was designed and fabricated by 0.35 μm BiCMOS technology. This paper proposes a scheme which combines the automatic power control loop and temperature com-pensation for modulation current in order to maintain constant extinction ratio and average optical power. To implement tem-perature compensation for modulation current,a novel circuit which generates a PTAT current by using the injecting base current of a bipolar transistor in saturation region,and alternates the amplifier feedback loop(closed or not) to control the state of the current path is presented. Simulation results showed that programmed by choice of external resistors,the IC can provide modu-lation current from 5 mA to 85 mA with temperature compensation adjustments and independent bias current from 4 mA to 100 mA. Optical test results showed that clear eye-diagrams can be obtained at 155 Mbps,with the output optical power being nearly constant,and the variation of extinction ratio being lower than 0.7 dB.展开更多
In this paper, progresses of color maintenance, also known as color shift, in solid-state lighting(SSL) systems are thoroughly reviewed. First, color shift is introduced and a few examples are given from different rea...In this paper, progresses of color maintenance, also known as color shift, in solid-state lighting(SSL) systems are thoroughly reviewed. First, color shift is introduced and a few examples are given from different real-life industrial conditions. Different degradation mechanisms in different parts of the system are also explained. Different materials used as lenses/encapsulants in light-emitting diode(LED)-based products are introduced and their contributions to color shift are discussed. Efforts put into standardization, characterizing, and predicting lumen maintenance are also briefly reviewed in this paper.展开更多
Avalanche photodiodes(APDs) are promising light sensors with high quantum efficiency and low noise. It has been extensively used in radiation detection,laser radar and other weak signal detection fields. Unlike other ...Avalanche photodiodes(APDs) are promising light sensors with high quantum efficiency and low noise. It has been extensively used in radiation detection,laser radar and other weak signal detection fields. Unlike other photodiodes,APD is a very sensitive light detector with very high internal gain. The basic theory shows that the gain of APD is related to the temperature. The internal gain fluctuates with the variation of temperature. Investigated was the influence of the variation of the gain induced by the fluctuation of temperature on the output from APD for a very weak laser pulse input in laser radar. An active reverse-biased voltage compensation method is used to stabilize the gain of APD. An APD model is setup to simulate the detection of light pulse signal. The avalanche process,various noises and temperature's effect are all included in the model. Our results show that for the detection of weak light signal such as in laser radar,even a very small fluctuation of temperature could cause a great effect on APD's gain. The results show that the signal-to-noise ratio of the APD's output could be improved effectively with the active gain-control system.展开更多
Zea mays L. is one of the biggest cropping systems among the sustainable development agronomy. Pollen from this crop source is unexplored and apiculture can be a good partner adding value to the product and creating n...Zea mays L. is one of the biggest cropping systems among the sustainable development agronomy. Pollen from this crop source is unexplored and apiculture can be a good partner adding value to the product and creating new jobs helping to solve some social issues as unemployment. However, food safety is crucial, thus the aim of this study was to explore the flavonoid/phenolic profiles from Z. mays L. pollen as a fingerprint for this plant identification and also to demonstrate how the method of bee pollen samples (honeybee collected pollen) is applied. For this purpose, several sources ofZ. mays L. pollen were analyzed, including corn hybrids and genetic modified samples collected at the breeding fields. For this work, samples were taken at several years from 2000 to 2012 and collected from different countries and locations, such as Portugal, Mexico and Brazil. Results showed, for the first time, that the fingerprint (flavonoid/phenolic profile) for Z. mays L. pollen does not change over the time of sampling neither with the region of harvesting. The high performance liquid chromatography-diode array detector (HPLC/DAD) fingerprints of phenolic/flavonoid extract from Z. mays remain unchanged for all samples analyzed from different countries, hybrids and/or genetic modified plants. This is also the first study reporting these phenolic compounds not only in pollen collected directly from hybrid plants, but also in Z. mays bee pollen. The described fingerprinting method is easy, fast and accurate for the characterization of Z. mays L. pollen samples and complete microscopic analysis because it is species-specific.展开更多
Therapeutic endoscopic retrograde cholangiopancreatography (ERCP) is the mainstay treatment for bile duct disease. The procedure is difficult per se, especially when a side-viewing duodenoscope is used, and when the p...Therapeutic endoscopic retrograde cholangiopancreatography (ERCP) is the mainstay treatment for bile duct disease. The procedure is difficult per se, especially when a side-viewing duodenoscope is used, and when the patient has altered anatomical features, such as colonic interposition. Currently, there is no consensus on the standard approach for therapeutic ERCP in patients with total esophagectomy and colonic interposition. We describe a novel treatment design that involves the use of a side-viewing duodenoscope to perform therapeutic ERCP in patients with total esophagectomy and colonic interposition. A gastroscope was initially introduced into the interposed colon and a radio-opaque standard guidewire was advanced to a distance beyond the papilla of Vater, before the gastroscope was withdrawn. A sideviewing duodenoscope was then introduced along the guidewire under fluoroscopic guidance. After cannulation into the papilla of Vater, endoscopic retrograde chol-angiography (ERC) revealed a filling defect (maximum diameter: 15 cm) at the distal portion of the common bile duct (CBD). This defect was determined to be a stone, which was successfully retrieved by a Dormia basket after complete sphincterotomy. With this treatment design, it is possible to perform therapeutic ERCP in patients with colonic interposition, thereby precluding the need for percutaneous drainage or surgery.展开更多
Zn 2+-TiO2 nanotube arrays were prepared by anodic oxidation method.The current-time curves were used to investigate their growth mechanism.Scanning electron microscopy and X-ray diffractometry were applied to charact...Zn 2+-TiO2 nanotube arrays were prepared by anodic oxidation method.The current-time curves were used to investigate their growth mechanism.Scanning electron microscopy and X-ray diffractometry were applied to characterizing their structures and properties.The photoelectrochemical properties were studied by electrochemical impedance spectrum(EIS).The optimised working conditions for TiO2 nanotube arrays were found to be pH 1,0.5%HF(mass fraction),20 V oxidation voltage and for 2 h.The produced sample was in anatase form,with length of 70-100 nm,thickness of 10 nm,uniform diameter and structure that does not collapse under the preparation conditions.The EIS results show that TiO2 nanotube arrays prepared with 0.5%HF(mass fraction) present a low impedance and TiO2 nanotube arrays loaded by Zn 2+could have a decreased resistance.This decrease could likely accelerate the transfer of carriers and even increase photoelectric conversion.展开更多
Based on the perspective of electricity supplier on the issues of Rural Surplus Labor resettlement, we analyzed China's rural electricity supplier development and resettlement of rural surplus labor issues and factor...Based on the perspective of electricity supplier on the issues of Rural Surplus Labor resettlement, we analyzed China's rural electricity supplier development and resettlement of rural surplus labor issues and factors, proposed the impact of sluggish development of rural electricity suppliers on their resettlement of the rural surplus labor force, and made the following suggestions: to develop township enterprises, to strengthen the construction of small towns, to settlement surplus labor force on the post, to transfer the surplus labor, to increase farmers' income; to eliminate the urban-rural dual structure, to implement loose household registration management system, to increase education level, to improve the quality of farmers, to provide information and improve guidance to change disorderly transfer to the orderly transfer.展开更多
This paper presents a new approach to alleviate the harmonics and to enhance the power factor of the ASD (adjustable speed drive). A conventional ASD with 2-level PWM (pulse width modulation) inverters generate hi...This paper presents a new approach to alleviate the harmonics and to enhance the power factor of the ASD (adjustable speed drive). A conventional ASD with 2-level PWM (pulse width modulation) inverters generate high dv/dt and high frequency common mode voltages which are harmful for the drive applications. It reduces the motor bearings life and conducted EMI (electro magnetic interference) deteriorates the insulation. In this paper, a diode clamped multilevel (3-level) inverter is used to perform dual task. It generates HF (high frequency) current to be injected at the input of the three-phase front-end rectifier thereby improving the harmonic spectra and the power factor. It also drives the induction motor. The salient feature of this paper is that it does not require separate converters for improving power factor and to drive induction motor. Furthermore, inverter switches operate with ZVS (zero voltage switching), thus reducing the switching losses substantially, The voltage stress of the switches also has been reduced to half of the conventional 2-level converter. The inverter is operated with SPWM (sinusoidal pulse width modulation) technique. The simulation results for a prototype of 2.2 kW are presented.展开更多
Carbon dots(CDs) are potentially useful in many areas such as bioimaging, light-emitting diodes, and sensing because of their excellent optical properties, high biocompatibility, and low toxicity.Knowledge of their ph...Carbon dots(CDs) are potentially useful in many areas such as bioimaging, light-emitting diodes, and sensing because of their excellent optical properties, high biocompatibility, and low toxicity.Knowledge of their photoluminescence(PL) mechanisms, which have been widely studied, is of significance in guiding the synthesis and promoting applications of CDs with tunable PL emissions. However,the intrinsic mechanism of PL emission remains unclear, and a unified mechanism has not been found because of differences in particle structures. This review generalizes the categories of CDs, noting their structural diversity. Three types of PL mechanism pertaining to structural differences are outlined: internal factors dominated emission(including the conjugation effect, the surface state, and the synergistic effect), external factors dominated emission(including the molecular state and the environment effect),and crosslink-enhanced emission. Optical applications of CDs are also briefly mentioned. Finally, the prospects for research into PL mechanisms are discussed, noting the remaining challenges and directions for future work.展开更多
Submicron stripe-shaped InGaN light-emitting diode (LED) arrays with individually addressable capabilities are demonstrated. The critical submicron- stripe metallic electrodes, which define the emission pattern, are...Submicron stripe-shaped InGaN light-emitting diode (LED) arrays with individually addressable capabilities are demonstrated. The critical submicron- stripe metallic electrodes, which define the emission pattern, are formed by direct LED writing in a mask-free manner. The individually addressable submicron-stripe LEDs show excellent performance in terms of their electrical characteristics (with typical turn-on voltage of 3 V, operational stability and power output up to 28 ~W at 3 mA). Unlike conventional broad-sized LEDs, the efficiency droop of the submicron-stripe LED is significantly suppressed--in fact, there is no efficiency droop for current densities up to 100 A/cm^2. Furthermore, the submicron-stripe LED shows a lower temperature-dependent shift of the emission wavelength. The lateral emission width is increased with increasing injection current, resulting in a wider lateral emission size than the metallic submicron-stripe electrode. The underlying physics of these phenomena are analysed. Such submicron-stripe LED arrays open up promising applications in nanophotonics and bio-sensing.展开更多
The distant downstream proportional integral(PI) feedback control was applied to the W-M lateral canal of the Maricopa Stanfield Irrigation and Drainage District located in central Arizona,U.S.A.Proper configuration o...The distant downstream proportional integral(PI) feedback control was applied to the W-M lateral canal of the Maricopa Stanfield Irrigation and Drainage District located in central Arizona,U.S.A.Proper configuration of those controls for the ca-nal can be challenging.Towards this end,an integrated approach to the design of an automatic control system for the canal was proposed.This approach presented herein is not only a systematical review of previous work,but also represents a further ad-vance of the previous simulation study by Tsinghua University(Shang et al,2011) on relating the canal control algorithm to local PI controls for the real canal.To evaluate the control system potential,performance of the control algorithm that was ob-tained through implanting predicative module into linear quadratic regulator(LQR) was analyzed with singular value bode.Additional "manufactured" tests were conducted to compare with the control system that is currently in use.The results indi-cated that the developed control system rather than the system in current use had considerable potential to closely match dis-charge at the downstream check structures with those ordered by water users while maintaining the water level throughout the length of the canal.展开更多
文摘A mixed-signal driver chip for a 132 × 64-pixel passive matrix OLED panel is presented. The chip has a 64-step gray scale control using the PWM method and two-step voltage pre-charge technology to pre-charge the OLED pixels. It consists of a digital controller,SRAM for display data memory,a DC-DC voltage converter,reference current generators,a pre-charge voltage generator,64 common drivers, and 132 segment drivers. The single chip is a typical current-drive circuit. It has been implemented in a Chartered 0.35/μm 18V HV (DDD) CMOS process with a die area of 10mm× 2mm. Test results show that the power consumption of the whole chip and all pixels with a constant driving current of 100μA while displaying the highest gray scale is 294mW with a 12V high voltage supply and a 3V low voltage supply.
基金Supported by the National Natural Science Foundation of China(Grant No.F600077007)Youth Science Foundation of Hei-longjiang University(Grant No.QL200410)
文摘In this paper,the low and the high frequency noises of a laser diode have been analyzed. Based on the analysis a novel scheme that adapts analog and digital hybrid techniques is proposed to stabilize the output power of a laser diode. With the hybrid controller,the low and the high frequency noises of a laser diode are conspicuously reduced.By accurate calculation,the short-term stability of the output power of laser diode reaches ±0.55‰, and the long-term stability is ±0.7‰.
基金Supported by the Fund of"985 Project"of Tianjin University (TD2001011).
文摘Characteristics of R22 and its new alternative refrigerant R200 flowing through adiabatic capillary tubes are investigated based on the homogeneous model. Extensive flow variables along tube length such as pressure, temperature, viscosity, velocity. Reynolds number, friction factor and vapor quality etc are compared between the two fluids under the same operating condition. Two cases are considered, namely, either the same tube length or the same mass flow rate as inlet condition. The results show that the mass flow rate in the capillary tube of R290 is 40% lower than that of R22 due to the differences of physical properties between the two fluids. Further. a parametric analysis is performed and it appears that effects of geometric and thermodynamic parameters on mass flow rate of R290 are weaker than that of R22. When the condensing temperature is increased from 40℃ to 50℃ C. the mass flow rate for R22 is increased by 16%. while the increasing rate for R290 is 13%.
基金Project (No. 2006AA01Z226) supported by the Hi-Tech Researchand Development Program (863) of China
文摘An integrated laser diode driver(LDD) driving an edge-emitting laser diode was designed and fabricated by 0.35 μm BiCMOS technology. This paper proposes a scheme which combines the automatic power control loop and temperature com-pensation for modulation current in order to maintain constant extinction ratio and average optical power. To implement tem-perature compensation for modulation current,a novel circuit which generates a PTAT current by using the injecting base current of a bipolar transistor in saturation region,and alternates the amplifier feedback loop(closed or not) to control the state of the current path is presented. Simulation results showed that programmed by choice of external resistors,the IC can provide modu-lation current from 5 mA to 85 mA with temperature compensation adjustments and independent bias current from 4 mA to 100 mA. Optical test results showed that clear eye-diagrams can be obtained at 155 Mbps,with the output optical power being nearly constant,and the variation of extinction ratio being lower than 0.7 dB.
基金project (M71.9.10380) in the framework of the Research Program of the Materials Innovation Institute M2i (www.m2i.nl)
文摘In this paper, progresses of color maintenance, also known as color shift, in solid-state lighting(SSL) systems are thoroughly reviewed. First, color shift is introduced and a few examples are given from different real-life industrial conditions. Different degradation mechanisms in different parts of the system are also explained. Different materials used as lenses/encapsulants in light-emitting diode(LED)-based products are introduced and their contributions to color shift are discussed. Efforts put into standardization, characterizing, and predicting lumen maintenance are also briefly reviewed in this paper.
基金Young Scientist Research Fund of Heilongjiang University(QL200508)
文摘Avalanche photodiodes(APDs) are promising light sensors with high quantum efficiency and low noise. It has been extensively used in radiation detection,laser radar and other weak signal detection fields. Unlike other photodiodes,APD is a very sensitive light detector with very high internal gain. The basic theory shows that the gain of APD is related to the temperature. The internal gain fluctuates with the variation of temperature. Investigated was the influence of the variation of the gain induced by the fluctuation of temperature on the output from APD for a very weak laser pulse input in laser radar. An active reverse-biased voltage compensation method is used to stabilize the gain of APD. An APD model is setup to simulate the detection of light pulse signal. The avalanche process,various noises and temperature's effect are all included in the model. Our results show that for the detection of weak light signal such as in laser radar,even a very small fluctuation of temperature could cause a great effect on APD's gain. The results show that the signal-to-noise ratio of the APD's output could be improved effectively with the active gain-control system.
文摘Zea mays L. is one of the biggest cropping systems among the sustainable development agronomy. Pollen from this crop source is unexplored and apiculture can be a good partner adding value to the product and creating new jobs helping to solve some social issues as unemployment. However, food safety is crucial, thus the aim of this study was to explore the flavonoid/phenolic profiles from Z. mays L. pollen as a fingerprint for this plant identification and also to demonstrate how the method of bee pollen samples (honeybee collected pollen) is applied. For this purpose, several sources ofZ. mays L. pollen were analyzed, including corn hybrids and genetic modified samples collected at the breeding fields. For this work, samples were taken at several years from 2000 to 2012 and collected from different countries and locations, such as Portugal, Mexico and Brazil. Results showed, for the first time, that the fingerprint (flavonoid/phenolic profile) for Z. mays L. pollen does not change over the time of sampling neither with the region of harvesting. The high performance liquid chromatography-diode array detector (HPLC/DAD) fingerprints of phenolic/flavonoid extract from Z. mays remain unchanged for all samples analyzed from different countries, hybrids and/or genetic modified plants. This is also the first study reporting these phenolic compounds not only in pollen collected directly from hybrid plants, but also in Z. mays bee pollen. The described fingerprinting method is easy, fast and accurate for the characterization of Z. mays L. pollen samples and complete microscopic analysis because it is species-specific.
文摘Therapeutic endoscopic retrograde cholangiopancreatography (ERCP) is the mainstay treatment for bile duct disease. The procedure is difficult per se, especially when a side-viewing duodenoscope is used, and when the patient has altered anatomical features, such as colonic interposition. Currently, there is no consensus on the standard approach for therapeutic ERCP in patients with total esophagectomy and colonic interposition. We describe a novel treatment design that involves the use of a side-viewing duodenoscope to perform therapeutic ERCP in patients with total esophagectomy and colonic interposition. A gastroscope was initially introduced into the interposed colon and a radio-opaque standard guidewire was advanced to a distance beyond the papilla of Vater, before the gastroscope was withdrawn. A sideviewing duodenoscope was then introduced along the guidewire under fluoroscopic guidance. After cannulation into the papilla of Vater, endoscopic retrograde chol-angiography (ERC) revealed a filling defect (maximum diameter: 15 cm) at the distal portion of the common bile duct (CBD). This defect was determined to be a stone, which was successfully retrieved by a Dormia basket after complete sphincterotomy. With this treatment design, it is possible to perform therapeutic ERCP in patients with colonic interposition, thereby precluding the need for percutaneous drainage or surgery.
基金Project(20976016)supported by the National Natural Science Foundation of ChinaProject(09JJ606)supported by the Natural Science Foundation of Hunan Province,ChinaProject(08FJ1002)supported by Key Science Research Project of the Hunan Provincial Natural Science,China
文摘Zn 2+-TiO2 nanotube arrays were prepared by anodic oxidation method.The current-time curves were used to investigate their growth mechanism.Scanning electron microscopy and X-ray diffractometry were applied to characterizing their structures and properties.The photoelectrochemical properties were studied by electrochemical impedance spectrum(EIS).The optimised working conditions for TiO2 nanotube arrays were found to be pH 1,0.5%HF(mass fraction),20 V oxidation voltage and for 2 h.The produced sample was in anatase form,with length of 70-100 nm,thickness of 10 nm,uniform diameter and structure that does not collapse under the preparation conditions.The EIS results show that TiO2 nanotube arrays prepared with 0.5%HF(mass fraction) present a low impedance and TiO2 nanotube arrays loaded by Zn 2+could have a decreased resistance.This decrease could likely accelerate the transfer of carriers and even increase photoelectric conversion.
文摘Based on the perspective of electricity supplier on the issues of Rural Surplus Labor resettlement, we analyzed China's rural electricity supplier development and resettlement of rural surplus labor issues and factors, proposed the impact of sluggish development of rural electricity suppliers on their resettlement of the rural surplus labor force, and made the following suggestions: to develop township enterprises, to strengthen the construction of small towns, to settlement surplus labor force on the post, to transfer the surplus labor, to increase farmers' income; to eliminate the urban-rural dual structure, to implement loose household registration management system, to increase education level, to improve the quality of farmers, to provide information and improve guidance to change disorderly transfer to the orderly transfer.
文摘This paper presents a new approach to alleviate the harmonics and to enhance the power factor of the ASD (adjustable speed drive). A conventional ASD with 2-level PWM (pulse width modulation) inverters generate high dv/dt and high frequency common mode voltages which are harmful for the drive applications. It reduces the motor bearings life and conducted EMI (electro magnetic interference) deteriorates the insulation. In this paper, a diode clamped multilevel (3-level) inverter is used to perform dual task. It generates HF (high frequency) current to be injected at the input of the three-phase front-end rectifier thereby improving the harmonic spectra and the power factor. It also drives the induction motor. The salient feature of this paper is that it does not require separate converters for improving power factor and to drive induction motor. Furthermore, inverter switches operate with ZVS (zero voltage switching), thus reducing the switching losses substantially, The voltage stress of the switches also has been reduced to half of the conventional 2-level converter. The inverter is operated with SPWM (sinusoidal pulse width modulation) technique. The simulation results for a prototype of 2.2 kW are presented.
基金financially supported by the National Natural Science Foundation of China(21905253,51973200)the China Postdoctoral Science Foundation(2018M640681,2019T120632)。
文摘Carbon dots(CDs) are potentially useful in many areas such as bioimaging, light-emitting diodes, and sensing because of their excellent optical properties, high biocompatibility, and low toxicity.Knowledge of their photoluminescence(PL) mechanisms, which have been widely studied, is of significance in guiding the synthesis and promoting applications of CDs with tunable PL emissions. However,the intrinsic mechanism of PL emission remains unclear, and a unified mechanism has not been found because of differences in particle structures. This review generalizes the categories of CDs, noting their structural diversity. Three types of PL mechanism pertaining to structural differences are outlined: internal factors dominated emission(including the conjugation effect, the surface state, and the synergistic effect), external factors dominated emission(including the molecular state and the environment effect),and crosslink-enhanced emission. Optical applications of CDs are also briefly mentioned. Finally, the prospects for research into PL mechanisms are discussed, noting the remaining challenges and directions for future work.
文摘Submicron stripe-shaped InGaN light-emitting diode (LED) arrays with individually addressable capabilities are demonstrated. The critical submicron- stripe metallic electrodes, which define the emission pattern, are formed by direct LED writing in a mask-free manner. The individually addressable submicron-stripe LEDs show excellent performance in terms of their electrical characteristics (with typical turn-on voltage of 3 V, operational stability and power output up to 28 ~W at 3 mA). Unlike conventional broad-sized LEDs, the efficiency droop of the submicron-stripe LED is significantly suppressed--in fact, there is no efficiency droop for current densities up to 100 A/cm^2. Furthermore, the submicron-stripe LED shows a lower temperature-dependent shift of the emission wavelength. The lateral emission width is increased with increasing injection current, resulting in a wider lateral emission size than the metallic submicron-stripe electrode. The underlying physics of these phenomena are analysed. Such submicron-stripe LED arrays open up promising applications in nanophotonics and bio-sensing.
基金supported by the National Natural Science Foundation of China(Grant Nos.51109112,51109079)the Open Research Fund of State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin (Grant No.IWHR-SKL-201117)+1 种基金the China Postdoctoral Science Foundation(Grant No.20110490412)the China Scholarship Council is acknowledged for the financial support
文摘The distant downstream proportional integral(PI) feedback control was applied to the W-M lateral canal of the Maricopa Stanfield Irrigation and Drainage District located in central Arizona,U.S.A.Proper configuration of those controls for the ca-nal can be challenging.Towards this end,an integrated approach to the design of an automatic control system for the canal was proposed.This approach presented herein is not only a systematical review of previous work,but also represents a further ad-vance of the previous simulation study by Tsinghua University(Shang et al,2011) on relating the canal control algorithm to local PI controls for the real canal.To evaluate the control system potential,performance of the control algorithm that was ob-tained through implanting predicative module into linear quadratic regulator(LQR) was analyzed with singular value bode.Additional "manufactured" tests were conducted to compare with the control system that is currently in use.The results indi-cated that the developed control system rather than the system in current use had considerable potential to closely match dis-charge at the downstream check structures with those ordered by water users while maintaining the water level throughout the length of the canal.