Factorization of polynomials is one of the foundations of symbolic computation.Its applications arise in numerous branches of mathematics and other sciences.However,the present advanced programming languages such as C...Factorization of polynomials is one of the foundations of symbolic computation.Its applications arise in numerous branches of mathematics and other sciences.However,the present advanced programming languages such as C++ and J++,do not support symbolic computation directly.Hence,it leads to difficulties in applying factorization in engineering fields.In this paper,the authors present an algorithm which use numerical method to obtain exact factors of a bivariate polynomial with rational coefficients.The proposed method can be directly implemented in efficient programming language such C++ together with the GNU Multiple-Precision Library.In addition,the numerical computation part often only requires double precision and is easily parallelizable.展开更多
基金partly supported by the National Natural Science Foundation of China under Grant Nos.91118001 and 11170153the National Key Basic Research Project of China under Grant No.2011CB302400Chongqing Science and Technology Commission Project under Grant No.cstc2013jjys40001
文摘Factorization of polynomials is one of the foundations of symbolic computation.Its applications arise in numerous branches of mathematics and other sciences.However,the present advanced programming languages such as C++ and J++,do not support symbolic computation directly.Hence,it leads to difficulties in applying factorization in engineering fields.In this paper,the authors present an algorithm which use numerical method to obtain exact factors of a bivariate polynomial with rational coefficients.The proposed method can be directly implemented in efficient programming language such C++ together with the GNU Multiple-Precision Library.In addition,the numerical computation part often only requires double precision and is easily parallelizable.