The efficiency of advanced membranes towards removal of general and specific microbes from wastewater was investigated. The treatment included a subsequent system of activated sludge, ultrafiltration (hollow fibre me...The efficiency of advanced membranes towards removal of general and specific microbes from wastewater was investigated. The treatment included a subsequent system of activated sludge, ultrafiltration (hollow fibre membranes with 100 kDa cut-off, and spiral wound membranes with 20 kDa cut-off), and RO (reverse osmosis). The removal evaluation of screened microbes present in treated wastewater showed that hollow fibre membrane rejected only 1 log (90% rejection) of the TPC (total microbial count), TC (total coliforms), and FC (faecal coliforms). A higher effectiveness was observed with spiral wound, removing 2-3 logs (99%-99.9%) of TPC and complete rejection of TC and FC. The RO system was successful in total rejection of all received bacteria. The removal evaluation of inoculated specific types of bacteria showed that the hollow membranes removed 2 logs (99%) of inoculated E. coli (10^7-10^8 cfu/mL inoculum), 2-3 logs (99%-99.9%) of Enterococus spp. (10^7-10^10 cfu/mL inoculum), 1-2 logs (90%-99%) of Salmonella (10^8-10^10 cfu/mL inoculum) and 1-2 logs (90%-99%) of Shigella (10^5-10^6 cfu/mL inoculum). The spiral wound was significantly efficient in rejecting further 3 logs of E. coil, 5 logs of Enterococus spp., 4 logs of Salmonella, and a complete rejection of all received bacteria was accomplished by RO membrane. The results indicate that Gram positive bacteria were removed much more efficiently compared to the Gram negative ones, the rationale behind such behaviour is based on cell walls elasticity.展开更多
Introduced the technology and application of treating the gasification effluent offertilizer with the physical-chemistry and biochemistry united technology.The technology issimple and viable, and occupies less land.Wh...Introduced the technology and application of treating the gasification effluent offertilizer with the physical-chemistry and biochemistry united technology.The technology issimple and viable, and occupies less land.When the main equipment runs normally, thegasification effluent of fertilizer treated with the united technology reached the requirementby second-degree discharge standard of the'Discharge standard of water pollutants forsynthesize ammonia industry'.展开更多
文摘The efficiency of advanced membranes towards removal of general and specific microbes from wastewater was investigated. The treatment included a subsequent system of activated sludge, ultrafiltration (hollow fibre membranes with 100 kDa cut-off, and spiral wound membranes with 20 kDa cut-off), and RO (reverse osmosis). The removal evaluation of screened microbes present in treated wastewater showed that hollow fibre membrane rejected only 1 log (90% rejection) of the TPC (total microbial count), TC (total coliforms), and FC (faecal coliforms). A higher effectiveness was observed with spiral wound, removing 2-3 logs (99%-99.9%) of TPC and complete rejection of TC and FC. The RO system was successful in total rejection of all received bacteria. The removal evaluation of inoculated specific types of bacteria showed that the hollow membranes removed 2 logs (99%) of inoculated E. coli (10^7-10^8 cfu/mL inoculum), 2-3 logs (99%-99.9%) of Enterococus spp. (10^7-10^10 cfu/mL inoculum), 1-2 logs (90%-99%) of Salmonella (10^8-10^10 cfu/mL inoculum) and 1-2 logs (90%-99%) of Shigella (10^5-10^6 cfu/mL inoculum). The spiral wound was significantly efficient in rejecting further 3 logs of E. coil, 5 logs of Enterococus spp., 4 logs of Salmonella, and a complete rejection of all received bacteria was accomplished by RO membrane. The results indicate that Gram positive bacteria were removed much more efficiently compared to the Gram negative ones, the rationale behind such behaviour is based on cell walls elasticity.
文摘Introduced the technology and application of treating the gasification effluent offertilizer with the physical-chemistry and biochemistry united technology.The technology issimple and viable, and occupies less land.When the main equipment runs normally, thegasification effluent of fertilizer treated with the united technology reached the requirementby second-degree discharge standard of the'Discharge standard of water pollutants forsynthesize ammonia industry'.