期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于图注意力和改进Transformer的节点分类方法
1
作者
李鑫
陆伟
+2 位作者
马召祎
朱攀
康彬
《电子学报》
EI
CAS
CSCD
北大核心
2024年第8期2799-2810,共12页
当前,图Transformer主要在传统Transformer框架中附加辅助模块达到对图数据进行建模的目的 .然而,此类方法并未改进Transformer原有体系结构,数据建模精度还有待进一步提高.基于此,本文提出一种基于图注意力和改进Transformer的节点分...
当前,图Transformer主要在传统Transformer框架中附加辅助模块达到对图数据进行建模的目的 .然而,此类方法并未改进Transformer原有体系结构,数据建模精度还有待进一步提高.基于此,本文提出一种基于图注意力和改进Transformer的节点分类方法 .该方法构建基于拓扑特征增强的节点嵌入进行图结构强化学习,并且设计基于二级掩码的多头注意力机制对节点特征进行聚合及更新,最后引入归一前置及跳跃连接改进Transformer层间结构,避免节点特征趋同引起的过平滑问题.实验结果表明,相较于6类基线模型,该方法在不同性能指标上均可获得最优评估结果,且能同时兼顾小规模和中规模数据集的节点分类任务,实现分类性能的全面提升.
展开更多
关键词
节点分类
图注意力网络
TRANSFORMER
二级掩码
层间残差
多头注意力
下载PDF
职称材料
题名
基于图注意力和改进Transformer的节点分类方法
1
作者
李鑫
陆伟
马召祎
朱攀
康彬
机构
南京邮电大学物联网学院
出处
《电子学报》
EI
CAS
CSCD
北大核心
2024年第8期2799-2810,共12页
基金
国家自然科学基金(No.62171232)
江苏省重点研发计划(No.BE2020729)。
文摘
当前,图Transformer主要在传统Transformer框架中附加辅助模块达到对图数据进行建模的目的 .然而,此类方法并未改进Transformer原有体系结构,数据建模精度还有待进一步提高.基于此,本文提出一种基于图注意力和改进Transformer的节点分类方法 .该方法构建基于拓扑特征增强的节点嵌入进行图结构强化学习,并且设计基于二级掩码的多头注意力机制对节点特征进行聚合及更新,最后引入归一前置及跳跃连接改进Transformer层间结构,避免节点特征趋同引起的过平滑问题.实验结果表明,相较于6类基线模型,该方法在不同性能指标上均可获得最优评估结果,且能同时兼顾小规模和中规模数据集的节点分类任务,实现分类性能的全面提升.
关键词
节点分类
图注意力网络
TRANSFORMER
二级掩码
层间残差
多头注意力
Keywords
node classification
graph attention network
Transformer
secondary mask
interlayer residual
multihead attention
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于图注意力和改进Transformer的节点分类方法
李鑫
陆伟
马召祎
朱攀
康彬
《电子学报》
EI
CAS
CSCD
北大核心
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部