This paper presents a study on the optimum determination of partial transmission ratios of a mechanical drive system using a V-belt and a helical gearbox with second-step double gear-sets in order to get the minimum s...This paper presents a study on the optimum determination of partial transmission ratios of a mechanical drive system using a V-belt and a helical gearbox with second-step double gear-sets in order to get the minimum size of the system. The chosen objective function was the cross section dimension of the system. In the optimization problem, the design equation for pitting resistance of a gear set was investigated and equations on moment equilibrium condition of a mechanic system including a V-belt and a helical gearbox with second-step double gear-sets and their regular resistance condition were analysed. Based on the results of the study, effective formulas for calculation of the partial ratios of the V-belt and a helical gearbox with second-step double gear-sets were proposed. By using explicit models, the partial ratios can be determined accurately and simply.展开更多
The optimization of the performance of a single-stage Linde-Hampson refrigerator (LHR) operating with six different binary refrigerants (R23/R134a, R23/R227ea, R23/R236ea, R170/R290, R170/R600a and R170/R600) with...The optimization of the performance of a single-stage Linde-Hampson refrigerator (LHR) operating with six different binary refrigerants (R23/R134a, R23/R227ea, R23/R236ea, R170/R290, R170/R600a and R170/R600) with ozone depletion potentials (ODPs) of zero was conducted using a new approach at the temperature level of-60℃. Among these binary refrig- erants, the 0.55 and the 0.6 mole fractions of R23 for R23/R236ea are the most prospective nonflammable ones for the medium and low suction pressure compressors, respectively. For these two kinds of compressors, the 0.6 and the 0.65 mole fractions of R170 for R 170/R600, respectively, are the most prospective binary refrigerants with low global warming potentials (GWPs). The results of optimization of pressure levels indicate that the optimum low pressure value for coefficients of performance (COP) is achieved when the minimum temperature differences occur at both the hot and the cold ends of the recuperator at a specified composition and pressure ratio. Two useful new parameters, the entropy production per unit heat recuperated and the ratio of heat recuperating capacity to the power consumption of the compression, were introduced to analyze the exergy loss ratio in the recuperator. The new approach employed in this paper also suggests a promising application even to the optimization of the performance with multi-component refrigerants.展开更多
文摘This paper presents a study on the optimum determination of partial transmission ratios of a mechanical drive system using a V-belt and a helical gearbox with second-step double gear-sets in order to get the minimum size of the system. The chosen objective function was the cross section dimension of the system. In the optimization problem, the design equation for pitting resistance of a gear set was investigated and equations on moment equilibrium condition of a mechanic system including a V-belt and a helical gearbox with second-step double gear-sets and their regular resistance condition were analysed. Based on the results of the study, effective formulas for calculation of the partial ratios of the V-belt and a helical gearbox with second-step double gear-sets were proposed. By using explicit models, the partial ratios can be determined accurately and simply.
基金Project (Nos.50876095 and 50890184) supported by the National Natural Science Foundation of China
文摘The optimization of the performance of a single-stage Linde-Hampson refrigerator (LHR) operating with six different binary refrigerants (R23/R134a, R23/R227ea, R23/R236ea, R170/R290, R170/R600a and R170/R600) with ozone depletion potentials (ODPs) of zero was conducted using a new approach at the temperature level of-60℃. Among these binary refrig- erants, the 0.55 and the 0.6 mole fractions of R23 for R23/R236ea are the most prospective nonflammable ones for the medium and low suction pressure compressors, respectively. For these two kinds of compressors, the 0.6 and the 0.65 mole fractions of R170 for R 170/R600, respectively, are the most prospective binary refrigerants with low global warming potentials (GWPs). The results of optimization of pressure levels indicate that the optimum low pressure value for coefficients of performance (COP) is achieved when the minimum temperature differences occur at both the hot and the cold ends of the recuperator at a specified composition and pressure ratio. Two useful new parameters, the entropy production per unit heat recuperated and the ratio of heat recuperating capacity to the power consumption of the compression, were introduced to analyze the exergy loss ratio in the recuperator. The new approach employed in this paper also suggests a promising application even to the optimization of the performance with multi-component refrigerants.