针对心肌梗死(myocardial infarction,MI)12导联高频心电信号(high frequency electrocardiogram,HFECG)全局特征聚类问题,提出了一种计算机自动聚类算法。收集MIT-BIH标准心电数据库中的健康心电信号、早期心肌梗死心电信号、急性期心...针对心肌梗死(myocardial infarction,MI)12导联高频心电信号(high frequency electrocardiogram,HFECG)全局特征聚类问题,提出了一种计算机自动聚类算法。收集MIT-BIH标准心电数据库中的健康心电信号、早期心肌梗死心电信号、急性期心肌梗死心电信号、近期心肌梗死心电信号进行处理。应用二维主分量判别法(two dimensional principal component analysis,2D-PCA)对12导联HF-ECG进行融合特征提取,并应用基于均方差属性加权的遗传模拟退火K-means改进聚类算法。与常规K-means聚类算法相比,特征值更加简单直观,所提算法平均分类精度有较大提高,能对12导联HF-ECG进行更有效的聚类。展开更多
提出一种改进的基于Gabor小波变换和二维主分量分析2DPCA(2-Dimensional Principal component analysis)的掌纹识别。2DPCA克服了传统Gabor小波变换后直接进行主分量分析PCA(Principal component analysis)遇到的维数灾难问题,并且将PCA...提出一种改进的基于Gabor小波变换和二维主分量分析2DPCA(2-Dimensional Principal component analysis)的掌纹识别。2DPCA克服了传统Gabor小波变换后直接进行主分量分析PCA(Principal component analysis)遇到的维数灾难问题,并且将PCA与Fisher线性判别FLD(Fisher Linear Discriminate)结合起来,利用了以前仅用于降维的PCA特征和FLD特征相融合进行掌纹识别。基于PolyU掌纹库的实验结果表明,该方法不仅有更高的识别率,而且维数更低。展开更多
文摘针对心肌梗死(myocardial infarction,MI)12导联高频心电信号(high frequency electrocardiogram,HFECG)全局特征聚类问题,提出了一种计算机自动聚类算法。收集MIT-BIH标准心电数据库中的健康心电信号、早期心肌梗死心电信号、急性期心肌梗死心电信号、近期心肌梗死心电信号进行处理。应用二维主分量判别法(two dimensional principal component analysis,2D-PCA)对12导联HF-ECG进行融合特征提取,并应用基于均方差属性加权的遗传模拟退火K-means改进聚类算法。与常规K-means聚类算法相比,特征值更加简单直观,所提算法平均分类精度有较大提高,能对12导联HF-ECG进行更有效的聚类。
文摘提出一种改进的基于Gabor小波变换和二维主分量分析2DPCA(2-Dimensional Principal component analysis)的掌纹识别。2DPCA克服了传统Gabor小波变换后直接进行主分量分析PCA(Principal component analysis)遇到的维数灾难问题,并且将PCA与Fisher线性判别FLD(Fisher Linear Discriminate)结合起来,利用了以前仅用于降维的PCA特征和FLD特征相融合进行掌纹识别。基于PolyU掌纹库的实验结果表明,该方法不仅有更高的识别率,而且维数更低。