相比于以单波束测深原理为基础的ICCP、TERCOM等一维序列匹配辅助导航方法,基于多波束测深系统的二维阵列匹配算法增加了原始地形信息的丰富度,可以用来提高地形辅助匹配导航系统的精度和适用性。通过归一化灰度转换,使实时扫测地形和...相比于以单波束测深原理为基础的ICCP、TERCOM等一维序列匹配辅助导航方法,基于多波束测深系统的二维阵列匹配算法增加了原始地形信息的丰富度,可以用来提高地形辅助匹配导航系统的精度和适用性。通过归一化灰度转换,使实时扫测地形和原始数据库地形分别形成待匹配的模板灰度图和背景灰度图,采用圆窗口化搜索策略,分别计算实时图和子图的Hu矩,保证了相同地形特征的旋转不变性。通过归一化互相关算法衡量两个地形的相似性,得到匹配地形,实时的辅助主惯导修正误差。仿真表明,利用此匹配算法在实时扫测地形平坦区域和特征明显区域均能成功匹配;位置误差均在5个网格以内,能容忍的系统信噪比最小为9 d B,抗噪声能力强;Hu矩的抗旋转特性大大提高了此方法的适用性,能够满足高精度水下地形匹配辅助导航系统的苛刻要求。展开更多
Topography around the Yellow River mouth has changed greatly in recent years, but studies on the current state of ma- rine dynamics off the Yellow River mouth are relatively scarce. This paper uses a two-dimension num...Topography around the Yellow River mouth has changed greatly in recent years, but studies on the current state of ma- rine dynamics off the Yellow River mouth are relatively scarce. This paper uses a two-dimension numerical model (MIKE 21) to reveal the tidal and wave dynamics in 2012, and conducts comparative analysis of the changes from 1996 to 2012. The results show that M2 amphidromic point moved southeastward by 11 kin. It further reveals that the tides around the Yellow River mouth are relatively stable due to the small variations in the tidal constituents. Over the study period, there is no noticeable change in the distribution of tidal types and tidal range, and the mean tidal range off the river mouth during the period studied is 0.5-1.1 m. However, the tidal currents changed greatly due to large change in topography. It is observed that the area with strong tidal currents shifted from the old river mouth (1976-1996) to the modem river mouth (1996-present). While the tidal current speeds decreased continually off the old river mouth, they increased off the modem river mouth. The Maximum Tidal Current Speed (MTCS) reached 1.4 m s-1, and the maximum current speed of 50-year return period reached 2.8 m s-1. Waves also changed greatly due to change in topography. The significant wave height (H1/3) of 50-year return period changed proportionately with the water depth, and the ratio of Hi/3 to depth being 0.4-0.6. H1/3 of the 50-year return period in erosion zone increased continually with increasing water depth, and the rate of change varied between 0.06 and 0.07myr-1. Based on the results of this study, we infer that in the future, the modem river mouth will protrude gradually northward, while the erosion zone, comprising the old river mouth and area between the modern river mouth and the old river mouth (Intermediate region) will continue to erode. As the modem river mouth protrudes towards the sea, there will be a gradual increase in the current speed and decrease in wave height. Conversely, the old river mouth will retreat, with gradual decrease in current speed and increase in wave height. As more coastal constructions spring up around the Yellow River mouth in the future, we recommend that variation in hydrodynamics over time should be taken into consideration when designing such coastal constructions.展开更多
Through the Fourier-Bessel series expansion of wave functions,the analytical solution to the two-dimensional scattering problem of incidental plane P waves by circular-arc canyon topography with different depth-to-wid...Through the Fourier-Bessel series expansion of wave functions,the analytical solution to the two-dimensional scattering problem of incidental plane P waves by circular-arc canyon topography with different depth-to-width ratio is deduced.Unlike other existing analytical solutions,in order to ensure that the analytical solution is valid for higher frequency incident waves,the asymptotic properties of cylindrical functions are in this paper introduced to directly determine the unknown coefficients of scattering waves,avoiding the solution of linear equation systems and corresponding numerical issues,which in turn expand the frequency band in which the analytical solution is valid.Comparison with other existing analytical solutions demonstrates that the proposed analytical solution is correct.Furthermore,the scattering effects of a circular-arc canyon on the incident plane P wave are analyzed in a comparatively broad frequency band.展开更多
文摘相比于以单波束测深原理为基础的ICCP、TERCOM等一维序列匹配辅助导航方法,基于多波束测深系统的二维阵列匹配算法增加了原始地形信息的丰富度,可以用来提高地形辅助匹配导航系统的精度和适用性。通过归一化灰度转换,使实时扫测地形和原始数据库地形分别形成待匹配的模板灰度图和背景灰度图,采用圆窗口化搜索策略,分别计算实时图和子图的Hu矩,保证了相同地形特征的旋转不变性。通过归一化互相关算法衡量两个地形的相似性,得到匹配地形,实时的辅助主惯导修正误差。仿真表明,利用此匹配算法在实时扫测地形平坦区域和特征明显区域均能成功匹配;位置误差均在5个网格以内,能容忍的系统信噪比最小为9 d B,抗噪声能力强;Hu矩的抗旋转特性大大提高了此方法的适用性,能够满足高精度水下地形匹配辅助导航系统的苛刻要求。
基金supported by the National Natural Science Foundation of China (Grant Nos. 41030856 and 41006024)the Foundation of Shandong Province (Grant No. BS2012HZ022)+1 种基金the Project of China Geological Survey (Grant No. GZH201100203)the Project of Taishan Scholar
文摘Topography around the Yellow River mouth has changed greatly in recent years, but studies on the current state of ma- rine dynamics off the Yellow River mouth are relatively scarce. This paper uses a two-dimension numerical model (MIKE 21) to reveal the tidal and wave dynamics in 2012, and conducts comparative analysis of the changes from 1996 to 2012. The results show that M2 amphidromic point moved southeastward by 11 kin. It further reveals that the tides around the Yellow River mouth are relatively stable due to the small variations in the tidal constituents. Over the study period, there is no noticeable change in the distribution of tidal types and tidal range, and the mean tidal range off the river mouth during the period studied is 0.5-1.1 m. However, the tidal currents changed greatly due to large change in topography. It is observed that the area with strong tidal currents shifted from the old river mouth (1976-1996) to the modem river mouth (1996-present). While the tidal current speeds decreased continually off the old river mouth, they increased off the modem river mouth. The Maximum Tidal Current Speed (MTCS) reached 1.4 m s-1, and the maximum current speed of 50-year return period reached 2.8 m s-1. Waves also changed greatly due to change in topography. The significant wave height (H1/3) of 50-year return period changed proportionately with the water depth, and the ratio of Hi/3 to depth being 0.4-0.6. H1/3 of the 50-year return period in erosion zone increased continually with increasing water depth, and the rate of change varied between 0.06 and 0.07myr-1. Based on the results of this study, we infer that in the future, the modem river mouth will protrude gradually northward, while the erosion zone, comprising the old river mouth and area between the modern river mouth and the old river mouth (Intermediate region) will continue to erode. As the modem river mouth protrudes towards the sea, there will be a gradual increase in the current speed and decrease in wave height. Conversely, the old river mouth will retreat, with gradual decrease in current speed and increase in wave height. As more coastal constructions spring up around the Yellow River mouth in the future, we recommend that variation in hydrodynamics over time should be taken into consideration when designing such coastal constructions.
基金sponsored by the National Key Technology R&D Program (Grant No. 2006BAC13B02)the National Natural Science Foundation (Grant No.50608066)the Joint Earthquake Science Foundaton (Grant No. A07045),China
文摘Through the Fourier-Bessel series expansion of wave functions,the analytical solution to the two-dimensional scattering problem of incidental plane P waves by circular-arc canyon topography with different depth-to-width ratio is deduced.Unlike other existing analytical solutions,in order to ensure that the analytical solution is valid for higher frequency incident waves,the asymptotic properties of cylindrical functions are in this paper introduced to directly determine the unknown coefficients of scattering waves,avoiding the solution of linear equation systems and corresponding numerical issues,which in turn expand the frequency band in which the analytical solution is valid.Comparison with other existing analytical solutions demonstrates that the proposed analytical solution is correct.Furthermore,the scattering effects of a circular-arc canyon on the incident plane P wave are analyzed in a comparatively broad frequency band.