A 2-D numerical model was developed to predict the shape of weld pool in stationary GTA welding of commercial pure aluminium, without considering fluid flow in the weld pool. A Gaussian current density and heat input ...A 2-D numerical model was developed to predict the shape of weld pool in stationary GTA welding of commercial pure aluminium, without considering fluid flow in the weld pool. A Gaussian current density and heat input distribution on the surface of the workpiece were considered. The parameters of Gaussian distribution were modified by comparing calculated results with experimental ones. It was found that these distribution parameters are fimctions of applied current and arc length. Effects of arc length, applied current and welding time on the geometry of the weld pool were investigated. To check the validity of the model, a series of experiments were also conducted. In general, the agreement between calculated overall shape of the weld pool and the experimental one was acceptable, especially in low applied currents. Therefore, it can be concluded that in pure aluminium, the heat conduction is dominant mechanism of heat transfer in the weld pool.展开更多
Electrochemical extraction of contaminants from soils is a promising soil decontamination technology. Various experiments have been conducted to study electrochemical reactions and geochemical processes in the electro...Electrochemical extraction of contaminants from soils is a promising soil decontamination technology. Various experiments have been conducted to study electrochemical reactions and geochemical processes in the electrochemical extraction using different experimental apparatuses. This paper presents the development of a new closed two-dimensional(2D) apparatus that can better simulate the field application of the technology and accurately monitor the most important electrochemical parameters to understand the process. The innovative features of the new apparatus include the outer and inner electrodes designed to apply a non-uniform electrical field across the specimen as in the field electrochemical remediation process, the probes installed to measure the 2D distribution of electrical voltage, and the gas and fluid volume measurement devices used to accurately monitor the gas generation and electroosmotic flow rates at both electrodes as a function of time. The components of this new apparatus and the features of each component are described. The operating procedure and some typical results from three experiments with the apparatus are demonstrated. The results show that the variation of the gas generation rate is in good agreement with the electric current. Their relation provides a valid evaluation for electrochemical behavior of the system and Faraday's laws of electrolysis. The 2D profiles of cadmium concentration and voltage distribution at the end of the experiment reveal the great effects of a non-uniform electrical field on the contaminant mobilization.展开更多
In this paper, we experimentally investigate the pattern transition of two-dimensional Faraday waves at an extremely shallow depth in a Hele-Shaw cell. Several patterns of Faraday waves are observed, which have some s...In this paper, we experimentally investigate the pattern transition of two-dimensional Faraday waves at an extremely shallow depth in a Hele-Shaw cell. Several patterns of Faraday waves are observed, which have some significant differences in wave profile,wave height and wave length. It is found that, in a wide range of the forcing frequency f, there always exists a region of the acceleration amplitude A, in which there exist the so-called hysteretic jumps between different patterns of Faraday waves. All of these experimental observations could enrich our knowledges about the Faraday waves and would be helpful to the further theoretical studies on the related topic in future.展开更多
文摘A 2-D numerical model was developed to predict the shape of weld pool in stationary GTA welding of commercial pure aluminium, without considering fluid flow in the weld pool. A Gaussian current density and heat input distribution on the surface of the workpiece were considered. The parameters of Gaussian distribution were modified by comparing calculated results with experimental ones. It was found that these distribution parameters are fimctions of applied current and arc length. Effects of arc length, applied current and welding time on the geometry of the weld pool were investigated. To check the validity of the model, a series of experiments were also conducted. In general, the agreement between calculated overall shape of the weld pool and the experimental one was acceptable, especially in low applied currents. Therefore, it can be concluded that in pure aluminium, the heat conduction is dominant mechanism of heat transfer in the weld pool.
基金Supported by the National Natural Science Foundation of China(41201303,20807028,41372262)the Fundamental Research for the Central Universities(14CX02052A,14CX02191A)+1 种基金the Qingdao Science and Technology Program for young scientists(14-2-4-86-jch)the State Key Laboratory of Pollution Control and Resource Reuse Foundation(PCRRF13023)
文摘Electrochemical extraction of contaminants from soils is a promising soil decontamination technology. Various experiments have been conducted to study electrochemical reactions and geochemical processes in the electrochemical extraction using different experimental apparatuses. This paper presents the development of a new closed two-dimensional(2D) apparatus that can better simulate the field application of the technology and accurately monitor the most important electrochemical parameters to understand the process. The innovative features of the new apparatus include the outer and inner electrodes designed to apply a non-uniform electrical field across the specimen as in the field electrochemical remediation process, the probes installed to measure the 2D distribution of electrical voltage, and the gas and fluid volume measurement devices used to accurately monitor the gas generation and electroosmotic flow rates at both electrodes as a function of time. The components of this new apparatus and the features of each component are described. The operating procedure and some typical results from three experiments with the apparatus are demonstrated. The results show that the variation of the gas generation rate is in good agreement with the electric current. Their relation provides a valid evaluation for electrochemical behavior of the system and Faraday's laws of electrolysis. The 2D profiles of cadmium concentration and voltage distribution at the end of the experiment reveal the great effects of a non-uniform electrical field on the contaminant mobilization.
基金supported by the National Key Basic Research Program of China(Grant No.2014CB046801)
文摘In this paper, we experimentally investigate the pattern transition of two-dimensional Faraday waves at an extremely shallow depth in a Hele-Shaw cell. Several patterns of Faraday waves are observed, which have some significant differences in wave profile,wave height and wave length. It is found that, in a wide range of the forcing frequency f, there always exists a region of the acceleration amplitude A, in which there exist the so-called hysteretic jumps between different patterns of Faraday waves. All of these experimental observations could enrich our knowledges about the Faraday waves and would be helpful to the further theoretical studies on the related topic in future.