The numerical solution of large scale multi-dimensional convection diffusion equations often requires efficient parallel algorithms.In this work,we consider the extension of a recently proposed non-overlapping domain ...The numerical solution of large scale multi-dimensional convection diffusion equations often requires efficient parallel algorithms.In this work,we consider the extension of a recently proposed non-overlapping domain decomposition method for two dimensional time dependent convection diffusion equations with variable coefficients. By combining predictor-corrector technique,modified upwind differences with explicitimplicit coupling,the method under consideration provides intrinsic parallelism while maintaining good stability and accuracy.Moreover,for multi-dimensional problems, the method can be readily implemented on a multi-processor system and does not have the limitation on the choice of subdomains required by some other similar predictor-corrector or stabilized schemes.These properties of the method are demonstrated in this work through both rigorous mathematical analysis and numerical experiments.展开更多
We investigate the symmetry reduction for the two-dimensional incompressible Navier-Stokes equationin conventional stream function form through Lie symmetry method and construct some similarity reduction solutions.Two...We investigate the symmetry reduction for the two-dimensional incompressible Navier-Stokes equationin conventional stream function form through Lie symmetry method and construct some similarity reduction solutions.Two special cases in [D.K.Ludlow,P.A.Clarkson,and A.P.Bassom,Stud.Appl.Math.103 (1999) 183] and a theoremin [S.Y.Lou,M.Jia,X.Y.Tang,and F.Huang,Phys.Rev.E 75 (2007) 056318] are retrieved.展开更多
基金the National Natural Science Foundation of China(No.10571017)supported in part by the National Natural Science Foundation of China(No.60533020)supported in part by NSF DMS 0712744
文摘The numerical solution of large scale multi-dimensional convection diffusion equations often requires efficient parallel algorithms.In this work,we consider the extension of a recently proposed non-overlapping domain decomposition method for two dimensional time dependent convection diffusion equations with variable coefficients. By combining predictor-corrector technique,modified upwind differences with explicitimplicit coupling,the method under consideration provides intrinsic parallelism while maintaining good stability and accuracy.Moreover,for multi-dimensional problems, the method can be readily implemented on a multi-processor system and does not have the limitation on the choice of subdomains required by some other similar predictor-corrector or stabilized schemes.These properties of the method are demonstrated in this work through both rigorous mathematical analysis and numerical experiments.
基金Supported by National Natural Science Foundations of China under Grant Nos.10735030,10475055,10675065,and 90503006National Basic Research Program of China (973 Program) under Grant No.2007CB814800+2 种基金PCSIRT (IRT0734)the Research Fund of Postdoctoral of China under Grant No.20070410727Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20070248120
文摘We investigate the symmetry reduction for the two-dimensional incompressible Navier-Stokes equationin conventional stream function form through Lie symmetry method and construct some similarity reduction solutions.Two special cases in [D.K.Ludlow,P.A.Clarkson,and A.P.Bassom,Stud.Appl.Math.103 (1999) 183] and a theoremin [S.Y.Lou,M.Jia,X.Y.Tang,and F.Huang,Phys.Rev.E 75 (2007) 056318] are retrieved.